4,545 research outputs found

    Off-diagonal Interactions, Hund's Rules and Pair-binding in Hubbard Molecules

    Full text link
    We have studied the effect of including nearest-neighbor, electron-electron interactions, in particular the off-diagonal (non density-density) terms, on the spectra of truncated tetrahedral and icosahedral ``Hubbard molecules,'' focusing on the relevance of these systems to the physics of doped C60_{60}. Our perturbation theoretic and exact diagonalization results agree with previous work in that the density-density term suppresses pair-binding. However, we find that for the parameter values of interest for C60C_{60} the off-diagonal terms {\em enhance} pair-binding, though not enough to offset the suppression due to the density-density term. We also find that the critical interaction strengths for the Hund's rules violating level crossings in C602_{60}^{-2}, C603_{60}^{-3} and C604_{60}^{-4} are quite insensitive to the inclusion of these additional interactions.Comment: 20p + 5figs, Revtex 3.0, UIUC preprint P-94-10-08

    Classical simulation of measurement-based quantum computation on higher-genus surface-code states

    Full text link
    We consider the efficiency of classically simulating measurement-based quantum computation on surface-code states. We devise a method for calculating the elements of the probability distribution for the classical output of the quantum computation. The operational cost of this method is polynomial in the size of the surface-code state, but in the worst case scales as 22g2^{2g} in the genus gg of the surface embedding the code. However, there are states in the code space for which the simulation becomes efficient. In general, the simulation cost is exponential in the entanglement contained in a certain effective state, capturing the encoded state, the encoding and the local post-measurement states. The same efficiencies hold, with additional assumptions on the temporal order of measurements and on the tessellations of the code surfaces, for the harder task of sampling from the distribution of the computational output.Comment: 21 pages, 13 figure

    Novel approach to the study of quantum effects in the early universe

    Full text link
    We develop a theoretical frame for the study of classical and quantum gravitational waves based on the properties of a nonlinear ordinary differential equation for a function σ(η)\sigma(\eta) of the conformal time η\eta, called the auxiliary field equation. At the classical level, σ(η)\sigma(\eta) can be expressed by means of two independent solutions of the ''master equation'' to which the perturbed Einstein equations for the gravitational waves can be reduced. At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically excited oscillator where the varying mass is replaced by the square cosmological scale factor a2(η)a^{2}(\eta). A quantum approach to the generation of gravitational waves is proposed on the grounds of the previous η\eta-dependent Hamiltonian. An estimate in terms of σ(η)\sigma(\eta) and a(η)a(\eta) of the destruction of quantum coherence due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding to any value of η\eta are also obtained. We conclude by discussing a few applications to quasi-de Sitter and standard de Sitter scenarios.Comment: 20 pages, to appear on PRD. Already published background material has been either settled up in a more compact form or eliminate

    Jahn-Teller versus quantum effects in the spin-orbital material LuVO3

    Get PDF
    We report on combined neutron and resonant x-ray scattering results, identifying the nature of the spin-orbital ground state and magnetic excitations in LuVO3 as driven by the orbital parameter. In particular, we distinguish between models based on orbital Peierls dimerization, taken as a signature of quantum effects in orbitals, and Jahn-Teller distortions, in favor of the latter. In order to solve this long-standing puzzle, polarized neutron beams were employed as a prerequisite in order to solve details of the magnetic structure, which allowed quantitative intensity-analysis of extended magnetic excitation data sets. The results of this detailed study enabled us to draw definite conclusions about classical vs quantum behavior of orbitals in this system and to discard the previous claims about quantum effects dominating the orbital physics of LuVO3 and similar systems.Comment: Phys. Rev. B 91, 161104(R) (2015

    The phase diagram of the lattice Calogero-Sutherland model

    Full text link
    We introduce a {\it lattice} version of the Calogero Sutherland model adapted to describe 1/d21/d^2 pairwise interacting steps with discrete positions on a vicinal surface. The configurational free energy is obtained within a transfer matrix method. The full phase diagram for attractive and for repulsive interaction is deduced. For attraction, critical temperatures of faceting transitions are found to depend on step density.Comment: latex PRBCalogSuth.tex, 6 files, 4 pages [SPEC-S00/900

    Shear-Wave Elastography Assessments of Quadriceps Stiffness Changes prior to, during and after Prolonged Exercise: A Longitudinal Study during an Extreme Mountain Ultra-Marathon.

    Get PDF
    In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for diagnosing and monitoring muscle changes
    corecore