96 research outputs found

    Efficiency of closed loop geothermal heat pumps: A sensitivity analysis

    Get PDF
    Geothermal heat pumps are becoming more and more popular as the price of fossil fuels is increasing and a strong reduction of anthropogenic CO2 emissions is needed. The energy performances of these plants are closely related to the thermal and hydrogeological properties of the soil, but a proper design and installation also plays a crucial role. A set of flow and heat transport simulations has been run to evaluate the impact of different parameters on the operation of a GHSP. It is demonstrated that the BHE length is the most influential factor, that the heat carrier fluid also plays a fundamental role, and that further improvements can be obtained by using pipe spacers and highly conductive grouts. On the other hand, if the physical properties of the soil are not surveyed properly, they represent a strong factor of uncertainty when modelling the operation of these plants. The thermal conductivity of the soil has a prevailing importance and should be determined with in-situ tests (TRT), rather than assigning values from literature. When groundwater flow is present, the advection should also be considered, due to its positive effect on the performances of BHEs; by contrast, as little is currently known about thermal dispersion, relying on this transport mechanism can lead to an excessively optimistic desig

    An Innovative Air Conditioning System for Changeable Heat Loads

    Get PDF
    An Innovative Air Conditioning System for Changeable Heat Loads / E. Trushliakov, M. Radchenko, T. Bohdal, R. Radchenko, S. Kantor // Lecture notes in mechanical engineering. – 2020. – P. 616–625.Abstract. The efficiency of air conditioning (AC) systems depends on the operation of their air coolers at varying heat loads in response to current changeable climatic conditions. In general case, an overall heat load of any AC system comprises the unstable range, corresponding to ambient air processing with heat load fluctuations, and a comparatively stable part for subsequent air subcooling. Following from this approach, a rational design overall heat load is chosen to provide a maximum annular refrigeration capacity generation and divided into a comparatively stable basic part and a remaining part for ambient air precooling at changeable heat loads. The ambient air precooling mode with considerable heat load fluctuation needs load modulation, whereas the comparatively stable heat load range can be covered by operation at about nominal mode. According to modern trend in AC systems the load modulation is performed by varying refrigerant feed to air coolers in Variable Refrigerant Flow (VRF) system. But with this the problem of inefficient operation of air coolers caused by dry-out of inner walls at the final stage of inside tube refrigerant evaporation followed by dropping the intensity of heat transfer remains unsolved. As alternative approach of the heat load modulation in AC systems there is a concept of incomplete refrigerant evaporation with overfilling air coils that leads to excluding a dry-out of inner surface of air coils and is realized through liquid refrigerant recirculation by injector (jet pump)

    Risk Assessment of HFC-321HFC-134a (30170) in Mini-Split Residential Air Conditioners

    Get PDF

    Latest developments in not-in-kind refrigeration technologies

    No full text
    corecore