71 research outputs found

    Estimating abundance of an elusive cetacean in a complex environment: Harbor porpoises (Phocoena phocoena) in inland waters of Southeast Alaska

    Get PDF
    The harbor porpoise (Phocoena phocoena) is common in temperate waters of the eastern North Pacific Ocean, including Southeast Alaska inland waters, a complex environment comprised of open waterways, narrow channels, and inlets. Two demographically independent populations are currently recognized in this region. Bycatch of porpoises in the salmon drift gillnet fisheries is suspected to occur regularly. In this study, we apply distance sampling to estimate abundance of harbor porpoise during ship surveys carried out in the summer of 2019. A stratified survey design was implemented to sample different harbor porpoise habitats. Survey tracklines were allocated following a randomized survey design with uniform coverage probability. Density and abundance for the northern and southern Southeast Alaska inland water populations were computed using a combination of design-based line- and strip-transect methods. A total of 2,893 km was surveyed in sea state conditions ranging from Beaufort 0 to 3 and 194 harbor porpoise groups (301 individuals) were detected. An independent sighting dataset from surveys conducted between 1991 and 2012 were used to calculate the probability of missing porpoise groups on the survey trackline (g[0]=0.53, CV=0.11). Abundance of the northern and southern populations were estimated at 1,619 (CV=0.26) and 890 (CV=0.37) porpoises, respectively. Bycatch estimates, which were only obtained for a portion of the drift gillnet fishery, suggest that mortality within the range of the southern population may be unsustainable. Harbor porpoises are highly vulnerable to mortality in gillnets, therefore monitoring abundance and bycatch is important for evaluating the potential impact of fisheries on this species in Southeast Alaska

    Temporal changes in Weddell seal dive behavior over winter: are females increasing foraging effort to support gestation?

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution, 8(23), (2018): 11857-11874. doi: 10.1002/ece3.4643.In capital‐breeding marine mammals, prey acquisition during the foraging trip coinciding with gestation must provide energy to meet the immediate needs of the growing fetus and also a store to meet the subsequent demands of lactation. Weddell seals (Leptonychotes weddellii) that give birth following the gestational (winter) foraging period gain similar proportions of mass and lipid as compared to females that fail to give birth. Therefore, any changes in foraging behavior can be attributed to gestational costs. To investigate differences in foraging effort associated with successful reproduction, twenty‐three satellite tags were deployed on post‐molt female Weddell seals in the Ross Sea. Of the 20 females that returned to the area the following year, 12 females gave birth and eight did not. Females that gave birth the following year began the winter foraging period with significantly longer and deeper dives, as compared to non‐reproductive seals. Mid‐ to late winter, reproductive females spent a significantly greater proportion of the day diving, and either depressed their diving metabolic rates (DMR), or exceeded their calculated aerobic dive limit (cADL) more frequently than females that returned without a pup. Moreover, non‐reproductive females organized their dives into 2–3 short bouts per day on average (BOUTshort; 7.06 ± 1.29 hr; mean ± 95% CI), whereas reproductive females made 1–2 BOUTshort per day (10.9 ± 2.84 hr), comprising one long daily foraging bout without rest. The magnitude of the increase in dive activity budgets and depression in calculated DMR closely matched the estimated energetic requirements of supporting a fetus. This study is one of the first to identify increases in foraging effort that are associated with successful reproduction in a top predator and indicates that reproductive females must operate closer to their physiological limits to support gestational costs.We are grateful for the help of field team members: Drs. Luis Hückstädt, Linnea Pearson, and Patrick Robinson for sample collection. Group B‐009‐M led by Drs. Robert Garrott, Jay Rotella, and Thierry Chambert provided information regarding animal reproductive status and provided great assistance in locating study animals. Logistical support was provided by the National Science Foundation (NSF) U.S. Antarctic Program, Raytheon Polar Services, and Lockheed Martin ASC; we thank all the support staff in Christchurch, NZ and McMurdo Station. This research was conducted with support from NSF ANT‐0838892 to D.P.C. and ANT‐0838937 to J.M.B. For J.M.B., this material is based upon work while serving at the National Science Foundation, and M.R.S was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE‐1242789. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Animal handling protocols were approved by the University of Alaska Anchorage and University of California Santa Cruz's Institutional Animal Care and Use Committees. Research and sample import to the United States were authorized under the Marine Mammal permit No. 87‐1851‐04 issued by the Office of Protected Resources, National Marine Fisheries Service. Research activities were also approved through Antarctic Conservation Act permits while at McMurdo Station

    Very Extended X-ray and H-alpha Emission in M82: Implications for the Superwind Phenomenon

    Full text link
    We discuss the properties and implications of a 3.7x0.9 kpc region of spatially-coincident X-ray and H-alpha emission about 11.6 kpc to the north of the galaxy M82 previously discussed by Devine and Bally (1999). The PSPC X-ray spectrum is fit by thermal plasma (kT=0.80+-0.17 keV) absorbed by only the Galactic foreground column density. We evaluate the relationship of the X-ray/H-alpha ridge to the M82 superwind. The main properties of the X-ray emission can all be explained as being due to shock-heating driven as the superwind encounters a massive ionized cloud in the halo of M82. This encounter drives a slow shock into the cloud, which contributes to the excitation of the observed H-alpha emission. At the same time, a fast bow-shock develops in the superwind just upstream of the cloud, and this produces the observed X-ray emission. This interpretation would imply that the superwind has an outflow speed of roughly 800 km/s, consistent with indirect estimates based on its general X-ray properties and the kinematics of the inner kpc-scale region of H-alpha filaments. The gas in the M82 ridge is roughly two orders-of-magnitude hotter than the minimum "escape temperature" at this radius, so this gas will not be retained by M82. (abridged)Comment: 24 pages (latex), 3 figures (2 gif files and one postscript), accepted for publication in Part 1 of The Astrophysical Journa

    First observations of Weddell seals foraging in sponges in Erebus Bay, Antarctica

    Get PDF
    Attaching cameras to marine mammals allows for first-hand observation of underwater behaviours that may otherwise go unseen. While studying the foraging behaviour of 26 lactating Weddell seals (Leptonychotes weddellii) in Erebus Bay during the austral spring of 2018 and 2019, we witnessed three adults and one pup investigating the cavities of Rossellidae glass sponges, with one seal visibly chewing when she removed her head from the sponge. To our knowledge, this is the first report of such behaviour. While the prey item was not identifiable, some Trematomus fish (a known Weddell seal prey) use glass sponges for shelter and in which to lay their eggs. Three of the four sponge foraging observations occurred around 13:00 (NZDT). Two of the three sponge foraging adults had higher-than-average reproductive rates, and the greatest number of previous pups of any seal in our study population, each having ten pups in 12 years. This is far higher than the study population average of three previous pups (± 2.6 SD). This novel foraging strategy may have evolved in response to changes in prey availability, and could offer an evolutionary advantage to some individuals that exploit prey resources that others may not. Our observations offer new insight into the foraging behaviours of one of the world’s most studied marine mammals. Further research on the social aspects of Weddell seal behaviour may increase our understanding of the extent and mechanisms of behavioural transfer between conspecifics. Research into the specific foraging behaviour of especially successful or experienced breeders is also warranted

    Seasonal Habitat Preference and Foraging Behaviour of Post-Moult Weddell Seals in the Western Ross Sea

    Get PDF
    Weddell seals (Leptonychotes weddellii) are important predators in the Southern Ocean and are among the best-studied pinnipeds on Earth, yet much still needs to be learned about their year-round movements and foraging behaviour. Using biologgers, we tagged 62 post-moult Weddell seals in McMurdo Sound and vicinity between 2010 and 2012. Generalized additive mixed models were used to (i) explain and predict the probability of seal presence and foraging behaviour from eight environmental variables, and (ii) examine foraging behaviour in relation to dive metrics. Foraging probability was highest in winter and lowest in summer, and foraging occurred mostly in the water column or just above the bottom; across all seasons, seals preferentially exploited the shallow banks and deeper troughs of the Ross Sea, the latter providing a pathway for Circumpolar Deep Water to flow onto the shelf. In addition, the probability of Weddell seal occurrence and foraging increased with increasing bathymetric slope and where water depth was typically less than 600 m. Although the probability of occurrence was higher closer to the shelf break, foraging was higher in areas closer to shore and over banks. This study highlights the importance of overwinter foraging for recouping body mass lost during the previous summer

    Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal

    Get PDF
    The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean

    Data quality influences the predicted distribution and habitat of four southern-hemisphere albatross species

    Get PDF
    Few studies have assessed the influence of data quality on the predicted probability of occurrence and preferred habitat of marine predators. We compared results from four species distribution models (SDMs) for four southern-hemisphere albatross species, Buller’s (Thalassarche bulleri), Campbell (T. impavida), grey-headed (T. chrysostoma), and white-capped (T. steadi), based on datasets of differing quality, ranging from no location data to twice-daily locations of individual birds collected by geolocation devices. Two relative environmental suitability (RES) models were fit using minimum and maximum preferred and absolute values for each environmental variable based on (1) monthly 50% kernel density contours and background environmental data, and (2) primary literature or expert opinion. Additionally, two boosted regression tree (BRT) models were fit using (1) opportunistic sightings data, and (2) geolocation data from bird-borne electronic tags. Using model-specific threshold values, habitat was quantified for each species and model. Model variables included distance from land, bathymetry, sea surface temperature, and chlorophyll-a concentration. Results from both RES models and the BRT model fit with opportunistic sightings were compared to those from the BRT model fit using geolocation data to assess the influence of data quality on predicted occupancy and habitat. For all species, BRT models outperformed RES models. BRT models offer a predictive advantage over RES models by being able to identify relevant variables, incorporate environmental interactions, and provide spatially explicit estimates of model uncertainty. RES models resulted in larger, less refined areas of predicted habitat for all species. Our study highlights the importance of data quality in predicting the distribution and habitat of albatrosses and emphasises the need to consider the pros and cons associated with different levels of data quality when using SDMs to inform management decisions. Furthermore, we examine the overlap in preferred habitat predicted by each SDM with fishing effort. We discuss the influence of data quality on predicting the wide-scale distributions of pelagic seabirds and how these impacts could result in different protection measures

    Translating Marine Animal Tracking Data into Conservation Policy and Management

    Get PDF
    There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is however difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits
    corecore