214 research outputs found

    Mineralogy and composition of Archean Crust, Greenland: A pilot study

    Get PDF
    The Portable Instant Display and Analysis Spectrometer (PIDAS) was taken to southwestern Greenland to investigate in situ the potential application of AVIRIS to estimate the mineralogy and composition of rocks exposed in Archean terranes. The goal was to determine the feasibility of using a high spectral resolution scanner to find and study pristine rocks, those that have not been altered by subsequent deformation and metamorphism. The application of AVIRIS data to the problems in Greenland is logical. However, before a costly deployment of the U-2 aircraft to Greenland is proposed, this study was undertaken to acquire the spectral data necessary to verify that mineralogical mapping in the environmental conditions found there is possible. Although field conditions were far from favorable, all of the major objectives of the study were addressed. One of the major concerns was that lichens would obscure the rock surfaces. It was found that the spectral signature of the lichens was distinct from the underlying rocks. Thus, a spectrum of a rock outcrop, with its partial cover of lichens, can be un-mixed into rock and lichen components. The data acquired during the course of this study supports the conclusion that areas of pristine Archean crust can be differentiated from that which has experienced low grade alteration associated with Proterizoic faulting

    The Portable Instant Display and Analysis Spectrometer (PIDAS)

    Get PDF
    A field spectrometer covering the range 0.4 to 2.5 microns was developed that acquires spectra in 2 seconds at 872 points within the spectrum. The Portable Instant Display and Analysis Spectrometer (PIDAS) can acquire spectra every 8 seconds and stores up to 288 spectra in bubble memory. A hand held display unit allows for display of the current spectrum acquired and superimposed on one of 128 permanently stored library spectra. PIDAS represents a major advance in the technology of field spectral data acquisition and for the first time makes possible the acquisition of enough spectra to characterize the mean and intraclass variance within a LANDSAT MSS or TM pixel

    Method and apparatus for instantaneous band ratioing in a reflectance radiometer

    Get PDF
    A hand-held instrument is provided to compare information from selected infrared and visible bands in the 0.4 to 2.5 micrometer range, to perform ratioing via a dividing circuit (17) and to directly read out, via a display system (18), ratio values in a continuous digital display. The dual-beam, ratioing radiometer contains two optical trains (10, 12), each having two repeater lenses (L1a, L1b and L2a, L2b) and a cooled lead sulfide detector (D1, D2). One of the trains (10) is pivotal to facilitate measurements at distances ranging from about 1 meter to infinity. The optical trains are intersected by a set of two coaxially-mounted filter wheels (F1, F2), each containing up to five interference filters and slits to pass radiation filtered by the other. Filters with band passes as narrow as 0.01 micrometer are used in the region 0.4 to 2.5 micrometers. The total time for a calibration and measurement is only a few seconds. It is known from previous field studies using prior art devices, that materials, e.g., clay minerals, and carbonate minerals such as limestone, have unique spectral properties in the 2.0 to 2.5 micrometer region. Using properly chosen spectral filters, and ratioing the signals to remove the effect of topography on the brightness measured, the instrument can be used for real-time analysis of reflecting materials in the field. Other materials in the broader range of 0.4 to 2.5 micrometers (and even beyond) could be similarly identified once the reflectance spectrum of the material is established by any means

    Separation of cirrus cloud from clear surface from AVIRIS data using the 1.38 micron water vapor band

    Get PDF
    Cirrus clouds play an important role in climate systems because of their large area coverage, persistence, and radiative effects. Thin cirrus clouds are difficult to detect in visible images and infrared images in the 10-12 micron atmospheric window region, particularly over land, because these clouds are partially transparent. Ackerman recently developed a method for detecting cirrus clouds using three narrow channels centered near 8, 11, and 12 microns, respectively, based on the analysis of IR emission spectra measured with a high spectral resolution interferometer. Barton also described a method for estimating cirrus cloud height and amount from measurements with two narrow channel radiometers of the Selective Chopper Radiometer on Nimbus 5. Both channels are located within the strong 2.7 micron water vapor band absorption region. One of the channels includes additional carbon dioxide absorption. A differential absorption technique with sets of empirical coefficients was used in the estimation of cirrus cloud heights and amounts. A technique using narrow channels in the strong 1.38 micron water vapor band absorption region for detecting cirrus clouds from spectral imaging data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) on 5 Dec. 1991 during the FIRE (The First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment) Phase 2 Field Experiment is described

    A linear spectral matching technique for retrieving equivalent water thickness and biochemical constituents of green vegetation

    Get PDF
    Over the last decade, technological advances in airborne imaging spectrometers, having spectral resolution comparable with laboratory spectrometers, have made it possible to estimate biochemical constituents of vegetation canopies. Wessman estimated lignin concentration from data acquired with NASA's Airborne Imaging Spectrometer (AIS) over Blackhawk Island in Wisconsin. A stepwise linear regression technique was used to determine the single spectral channel or channels in the AIS data that best correlated with measured lignin contents using chemical methods. The regression technique does not take advantage of the spectral shape of the lignin reflectance feature as a diagnostic tool nor the increased discrimination among other leaf components with overlapping spectral features. A nonlinear least squares spectral matching technique was recently reported for deriving both the equivalent water thicknesses of surface vegetation and the amounts of water vapor in the atmosphere from contiguous spectra measured with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The same technique was applied to a laboratory reflectance spectrum of fresh, green leaves. The result demonstrates that the fresh leaf spectrum in the 1.0-2.5 microns region consists of spectral components of dry leaves and the spectral component of liquid water. A linear least squares spectral matching technique for retrieving equivalent water thickness and biochemical components of green vegetation is described

    Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques

    Get PDF
    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive growing seasons (26 September 1989, 22 March 1990, and 7 August 1990) over an area of the High Plains east of Greeley, Colorado (40 deg 20 min N and 104 deg 16 min W). A repeat visit to assess vegetation at its peak growth was flown on 6 June 1993. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling and morphological relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, this area and regions similarly situated could be the first to experience the effects caused by global climate change. During the past 10,000 years there were at least four periods of extensive sand activity due to climate change, followed by periods of landscape stability, as shown in the stratigraphic record of this area

    Software for the derivation of scaled surface reflectances from AVIRIS data

    Get PDF
    An operational software program is now available for deriving 'scaled surface reflectances' from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The program simulates both the atmospheric scattering and absorption effects. Brief descriptions of the algorithm, inputs, outputs, the limitations of the software, and procedures for obtaining the software are given

    Differences between proposed Apollo sites: 1. Synthesis

    Get PDF
    Recent observations of the spectral reflectivity and emissivity of the five prime Apollo landing sites are evaluated in the context of similar observations of other localities on the moon and of data returned from unmanned lunar probes. We conclude that those five sites differ significantly only in minor constituents and/or relative valence states and that those differences are more modest than the differences that characterize mare regions generally. Recommendations of priorities for the five prime Apollo sites are made based on their uniqueness for sample return. Sampling of other lunar localities displaying anomalous emissivities and extreme color differences will be required to ascertain the full range of lithologies that constitute the lunar surface

    High Accuracy In-Flight Wavelength Calibration of Imaging Spectrometry Data

    Get PDF
    Accurate wavelength calibration of imaging spectrometer data is essential if proper atmospheric transmission corrections are to be made to obtain apparent surface reflectance. Accuracies of 0.1 nm are necessary for a 10 nm-sampling instrument in order to match the slopes of the deep atmospheric water vapor features that dominate the 0.7-2.3 micrometer regions. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is calibrated in the laboratory to determine the wavelength position and full-width-half-maximum (FWHM) response for each of the 224 channels. The accuracies are limited by the quality of the monochromator used as a source. The accuracies vary from plus or minus to plus or minus 1.5 nm depending on the wavelength region, in general decreasing with increasing wavelength. Green et al. make corrections to the wavelength calibrations by using the known positions of 14 atmospheric absorption features throughout the 0.4-2.5 micrometer wavelength region. These features, having varying width and intensity, were matched to the MODTRAN model with a non-linear least squares fitting algorithm. A complete calibration was developed for all 224 channels by interpolation. Instrument calibration cannot be assumed to be stable to 0.1 nm over a flight season given the rigors of thermal cycling and launch and landing loads. The upcoming sensor HYDICE will require a means for in-flight spectral calibration of each scene because the calibration is both temperature and pressure sensitive. In addition, any sensor using a two-dimensional array has the potential for systematic wavelength shifts as a function of cross-track position, commonly called 'smile'. Therefore, a rapid means for calibrating complete images will be required. The following describes a method for determining instrument wavelength calibration using atmospheric absorption features that is efficient enough to be used for entire images on workstations. This study shows the effect of the surface reflectance on the calibration accuracy and the calibration history for the AVIRIS B spectrometer over the 1992 flight season

    Comparison of methods for calibrating AVIRIS data to ground reflectance

    Get PDF
    We are comparing three basic methods of calibrating AVIRIS data to ground reflectance: (1) atmospheric radiative transfer models with the solar flux can be used to calibrate AVIRIS radiance data (Specific methods include the University of Colorado CSES ARP and ATREM algorithms); (2) Robert Green's modified MODTRAN and AVIRIS radiance model (This method is similar to 1 but differs in that the solar radiance is bypassed, so any errors in the solar flux are canceled, too); and (3) ground calibration using known sites in the AVIRIS scene. We are using 1992AVIRIS data over Cuprite, Nevada, and Blackhawk Island, Wisconsin, as our test scenes. Both these sites have extensive field measurements. The Cuprite site had a very clear atmosphere, thus path radiance was dominated by Rayleigh scattering with little or no flux beyond 1 micron. The Blackhawk site has more aerosols, with significant path radiance flux beyond 2 micron
    corecore