109 research outputs found

    Lack of Mutual Respect in Relationship The Endangered Partner

    Get PDF
    Violence in a relationship and in a family setting has been an issue of concern to various interest groups and professional organizations. Of particular interest in this article is violence against women in a relationship. While there is an abundance of knowledge on violence against women in general, intimate or partner femicide seems to have received less attention. Unfortunately, the incidence of violence against women, and intimate femicide in particular, has been an issue of concern in the African setting. This article examines the trends of intimate femicide in an African setting in general, and in Botswana in particular. The increase in intimate femicide is an issue of concern, which calls for collective effort to address. This article also examines trends offemicide in Botswana, and the antecedents and the precipitating factors. Some studies have implicated societal and cultural dynamics as playing significant roles in intimate femicide in the African setting. It is believed that the patriarchal nature of most African settings and the ideology of male supremacy have relegated women to a subordinate role. Consequently, respect for women in any relationship with men is lopsided in favor of men and has led to abuse of women, including intimate femicide. Other militating factors in intimate femicide ,are examined and the implications for counseling to assist the endangered female partner are discussed

    Biomagnifcation and body distribution of ivermectin in dung beetles

    Get PDF
    We thank the staf of Doñana Biological Reserve (DBR-ICTS), Doñana National Park, and Los Alcornocales Natural Park, especially D. Paz, F. Ibáñez, P. Bayón, M. Malla and D. Ruiz for logistic facilities for the field work and permissions (2019107300000904/IRM/MDCG/mes) to collect cattle dung and dung beetles. We are grateful to J. Castro and A. Rascón for technical assistance. We also thank A. V. Giménez-Gómez for her technical assistance in the laboratory work. We thank also F.-T Krell and the two anonymous reviewers for their constructive comments. Financial support was provided by the project CGL2015-68207-R of the Secretaría de Estado de Investigación–Ministerio de Economía y Competitividad.A terrestrial test system to investigate the biomagnifcation potential and tissue-specifc distribution of ivermectin, a widely used parasiticide, in the non-target dung beetle Thorectes lusitanicus (Jekel) was developed and validated. Biomagnifcation kinetics of ivermectin in T. lusitanicus was investigated by following uptake, elimination, and distribution of the compound in dung beetles feeding on contaminated faeces. Results showed that ivermectin was biomagnifed in adults of T. lusitanicus when exposed to non-lethal doses via food uptake. Ivermectin was quickly transferred from the gut to the haemolymph, generating a biomagnifcation factor (BMFk) three times higher in the haemolymph than in the gut after an uptake period of 12 days. The fat body appeared to exert a major role on the biomagnifcation of ivermectin in the insect body, showing a BMFk 1.6 times higher than in the haemolymph. The results of this study highlight that the biomagnifcation of ivermectin should be investigated from a global dung-based food web perspective and that the use of these antiparasitic substances should be monitored and controlled on a precautionary basis. Thus, we suggest that an additional efort be made in the development of standardised regulatory recommendations to guide biomagnifcation studies in terrestrial organisms, but also that it is necessary to adapt existing methods to assess the efects of such veterinary medical products

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution

    A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep

    Get PDF
    Sleep-active neurons depolarize during sleep to suppress wakefulness circuits. Wake-active wake-promoting neurons in turn shut down sleep-active neurons, thus forming a bipartite flip-flop switch. However, how sleep is switched on is unclear because it is not known how wakefulness is translated into sleep-active neuron depolarization when the system is set to sleep. Using optogenetics in Caenorhabditis elegans, we solved the presynaptic circuit for depolarization of the sleep-active RIS neuron during developmentally regulated sleep, also known as lethargus. Surprisingly, we found that RIS activation requires neurons that have known roles in wakefulness and locomotion behavior. The RIM interneurons-which are active during and can induce reverse locomotion-play a complex role and can act as inhibitors of RIS when they are strongly depolarized and as activators of RIS when they are modestly depolarized. The PVC command interneurons, which are known to promote forward locomotion during wakefulness, act as major activators of RIS. The properties of these locomotion neurons are modulated during lethargus. The RIMs become less excitable. The PVCs become resistant to inhibition and have an increased capacity to activate RIS. Separate activation of neither the PVCs nor the RIMs appears to be sufficient for sleep induction; instead, our data suggest that they act in concert to activate RIS. Forward and reverse circuit activity is normally mutually exclusive. Our data suggest that RIS may be activated at the transition between forward and reverse locomotion states, perhaps when both forward (PVC) and reverse (including RIM) circuit activity overlap. While RIS is not strongly activated outside of lethargus, altered activity of the locomotion interneurons during lethargus favors strong RIS activation and thus sleep. The control of sleep-active neurons by locomotion circuits suggests that sleep control may have evolved from locomotion control. The flip-flop sleep switch in C. elegans thus requires an additional component, wake-active sleep-promoting neurons that translate wakefulness into the depolarization of a sleep-active neuron when the worm is sleepy. Wake-active sleep-promoting circuits may also be required for sleep state switching in other animals, including in mammals
    • …
    corecore