353 research outputs found
Cat States and Single Runs for the Damped Harmonic Oscillator
We discuss the fate of initial states of the cat type for the damped harmonic
oscillator, mostly employing a linear version of the stochastic Schr\"odinger
equation. We also comment on how such cat states might be prepared and on the
relation of single realizations of the noise to single runs of experiments.Comment: 18, Revte
Funding Community Controlled Open Infrastructure for Scholarly Communication: The 2.5% Commitment Initiative
This paper describes the 2.5% Commitment Initiative and the work it has done to encourage contributions to shared digital infrastructure. It suggests a path forward and encourages libraries to participate and invest in open scholarly infrastructure
Predictability sieve, pointer states, and the classicality of quantum trajectories
We study various measures of classicality of the states of open quantum
systems subject to decoherence. Classical states are expected to be stable in
spite of decoherence, and are thought to leave conspicuous imprints on the
environment. Here these expected features of environment-induced superselection
(einselection) are quantified using four different criteria: predictability
sieve (which selects states that produce least entropy), purification time
(which looks for states that are the easiest to find out from the imprint they
leave on the environment), efficiency threshold (which finds states that can be
deduced from measurements on a smallest fraction of the environment), and
purity loss time (that looks for states for which it takes the longest to lose
a set fraction of their initial purity). We show that when pointer states --
the most predictable states of an open quantum system selected by the
predictability sieve -- are well defined, all four criteria agree that they are
indeed the most classical states. We illustrate this with two examples: an
underdamped harmonic oscillator, for which coherent states are unanimously
chosen by all criteria, and a free particle undergoing quantum Brownian motion,
for which most criteria select almost identical Gaussian states (although, in
this case, predictability sieve does not select well defined pointer states.)Comment: 10 pages, 13 figure
Unconditional Pointer States from Conditional Master Equations
When part of the environment responsible for decoherence is used to extract
information about the decohering system, the preferred {\it pointer states}
remain unchanged. This conclusion -- reached for a specific class of models --
is investigated in a general setting of conditional master equations using
suitable generalizations of predictability sieve. We also find indications that
the einselected states are easiest to infer from the measurements carried out
on the environment.Comment: 4 pages, 3 .eps figures; final version to appear in Phys.Rev.Let
Optimal control of entanglement via quantum feedback
It has recently been shown that finding the optimal measurement on the
environment for stationary Linear Quadratic Gaussian control problems is a
semi-definite program. We apply this technique to the control of the
EPR-correlations between two bosonic modes interacting via a parametric
Hamiltonian at steady state. The optimal measurement turns out to be nonlocal
homodyne measurement -- the outputs of the two modes must be combined before
measurement. We also find the optimal local measurement and control technique.
This gives the same degree of entanglement but a higher degree of purity than
the local technique previously considered [S. Mancini, Phys. Rev. A {\bf 73},
010304(R) (2006)].Comment: 10 pages, 5 figure
Linear stochastic wave-equations for continuously measured quantum systems
While the linearity of the Schr\"odinger equation and the superposition
principle are fundamental to quantum mechanics, so are the backaction of
measurements and the resulting nonlinearity. It is remarkable, therefore, that
the wave-equation of systems in continuous interaction with some reservoir,
which may be a measuring device, can be cast into a linear form, even after the
degrees of freedom of the reservoir have been eliminated. The superposition
principle still holds for the stochastic wave-function of the observed system,
and exact analytical solutions are possible in sufficiently simple cases. We
discuss here the coupling to Markovian reservoirs appropriate for homodyne,
heterodyne, and photon counting measurements. For these we present a derivation
of the linear stochastic wave-equation from first principles and analyze its
physical content.Comment: 34 pages, Revte
Stochastic simulations of conditional states of partially observed systems, quantum and classical
In a partially observed quantum or classical system the information that we
cannot access results in our description of the system becoming mixed even if
we have perfect initial knowledge. That is, if the system is quantum the
conditional state will be given by a state matrix and if classical
the conditional state will be given by a probability distribution
where is the result of the measurement. Thus to determine the evolution of
this conditional state under continuous-in-time monitoring requires an
expensive numerical calculation. In this paper we demonstrating a numerical
technique based on linear measurement theory that allows us to determine the
conditional state using only pure states. That is, our technique reduces the
problem size by a factor of , the number of basis states for the system.
Furthermore we show that our method can be applied to joint classical and
quantum systems as arises in modeling realistic measurement.Comment: 16 pages, 11 figure
State and dynamical parameter estimation for open quantum systems
Following the evolution of an open quantum system requires full knowledge of
its dynamics. In this paper we consider open quantum systems for which the
Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system
similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]:
a radiatively damped atom driven by an unknown Rabi frequency (as
would occur for an atom at an unknown point in a standing light wave). By
measuring the environment of the system, knowledge about the system state, and
about the uncertain dynamical parameter, can be acquired. We find that these
two sorts of knowledge acquisition (quantified by the posterior distribution
for , and the conditional purity of the system, respectively) are quite
distinct processes, which are not strongly correlated. Also, the quality and
quantity of knowledge gain depend strongly on the type of monitoring scheme. We
compare five different detection schemes (direct, adaptive, homodyne of the
quadrature, homodyne of the quadrature, and heterodyne) using four
different measures of the knowledge gain (Shannon information about ,
variance in , long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure
Stochastic simulations of the quantum Zeno effect
Published versio
- …