353 research outputs found

    Cat States and Single Runs for the Damped Harmonic Oscillator

    Full text link
    We discuss the fate of initial states of the cat type for the damped harmonic oscillator, mostly employing a linear version of the stochastic Schr\"odinger equation. We also comment on how such cat states might be prepared and on the relation of single realizations of the noise to single runs of experiments.Comment: 18, Revte

    Funding Community Controlled Open Infrastructure for Scholarly Communication: The 2.5% Commitment Initiative

    Get PDF
    This paper describes the 2.5% Commitment Initiative and the work it has done to encourage contributions to shared digital infrastructure. It suggests a path forward and encourages libraries to participate and invest in open scholarly infrastructure

    Predictability sieve, pointer states, and the classicality of quantum trajectories

    Full text link
    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection (einselection) are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states -- the most predictable states of an open quantum system selected by the predictability sieve -- are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, predictability sieve does not select well defined pointer states.)Comment: 10 pages, 13 figure

    Unconditional Pointer States from Conditional Master Equations

    Get PDF
    When part of the environment responsible for decoherence is used to extract information about the decohering system, the preferred {\it pointer states} remain unchanged. This conclusion -- reached for a specific class of models -- is investigated in a general setting of conditional master equations using suitable generalizations of predictability sieve. We also find indications that the einselected states are easiest to infer from the measurements carried out on the environment.Comment: 4 pages, 3 .eps figures; final version to appear in Phys.Rev.Let

    Optimal control of entanglement via quantum feedback

    Full text link
    It has recently been shown that finding the optimal measurement on the environment for stationary Linear Quadratic Gaussian control problems is a semi-definite program. We apply this technique to the control of the EPR-correlations between two bosonic modes interacting via a parametric Hamiltonian at steady state. The optimal measurement turns out to be nonlocal homodyne measurement -- the outputs of the two modes must be combined before measurement. We also find the optimal local measurement and control technique. This gives the same degree of entanglement but a higher degree of purity than the local technique previously considered [S. Mancini, Phys. Rev. A {\bf 73}, 010304(R) (2006)].Comment: 10 pages, 5 figure

    Linear stochastic wave-equations for continuously measured quantum systems

    Full text link
    While the linearity of the Schr\"odinger equation and the superposition principle are fundamental to quantum mechanics, so are the backaction of measurements and the resulting nonlinearity. It is remarkable, therefore, that the wave-equation of systems in continuous interaction with some reservoir, which may be a measuring device, can be cast into a linear form, even after the degrees of freedom of the reservoir have been eliminated. The superposition principle still holds for the stochastic wave-function of the observed system, and exact analytical solutions are possible in sufficiently simple cases. We discuss here the coupling to Markovian reservoirs appropriate for homodyne, heterodyne, and photon counting measurements. For these we present a derivation of the linear stochastic wave-equation from first principles and analyze its physical content.Comment: 34 pages, Revte

    Stochastic simulations of conditional states of partially observed systems, quantum and classical

    Get PDF
    In a partially observed quantum or classical system the information that we cannot access results in our description of the system becoming mixed even if we have perfect initial knowledge. That is, if the system is quantum the conditional state will be given by a state matrix ρr(t)\rho_r(t) and if classical the conditional state will be given by a probability distribution Pr(x,t)P_r(x,t) where rr is the result of the measurement. Thus to determine the evolution of this conditional state under continuous-in-time monitoring requires an expensive numerical calculation. In this paper we demonstrating a numerical technique based on linear measurement theory that allows us to determine the conditional state using only pure states. That is, our technique reduces the problem size by a factor of NN, the number of basis states for the system. Furthermore we show that our method can be applied to joint classical and quantum systems as arises in modeling realistic measurement.Comment: 16 pages, 11 figure

    State and dynamical parameter estimation for open quantum systems

    Full text link
    Following the evolution of an open quantum system requires full knowledge of its dynamics. In this paper we consider open quantum systems for which the Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]: a radiatively damped atom driven by an unknown Rabi frequency Ω\Omega (as would occur for an atom at an unknown point in a standing light wave). By measuring the environment of the system, knowledge about the system state, and about the uncertain dynamical parameter, can be acquired. We find that these two sorts of knowledge acquisition (quantified by the posterior distribution for Ω\Omega, and the conditional purity of the system, respectively) are quite distinct processes, which are not strongly correlated. Also, the quality and quantity of knowledge gain depend strongly on the type of monitoring scheme. We compare five different detection schemes (direct, adaptive, homodyne of the xx quadrature, homodyne of the yy quadrature, and heterodyne) using four different measures of the knowledge gain (Shannon information about Ω\Omega, variance in Ω\Omega, long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure
    corecore