249 research outputs found

    Hartle-Hawking state is a maximum of entanglement entropy

    Get PDF
    It is shown that the Hartle-Hawking state of a scalar field is a maximum of entanglement entropy in the space of pure quantum states satisfying the condition that backreaction is finite. In other words, the Hartle-Hawking state is a curved-space analogue of the EPR state, which is also a maximum of entanglement entropy.Comment: Latex, 4 pages, Some comments are added on the "small backreaction condition

    Характеристика экономических отношений на финансовом рынке Украины

    Get PDF
    Розглянуто проблеми, особливості функціонування та взаємодії учасників фінансового ринку України. Обґрунтовано наявність внутрішніх фінансових джерел формування ресурсного потенціалу вітчизняних банків, доведено їх пріоритетність для країни порівняно із зовнішніми джерелами. Окреслено причини, що зумовлюють дефіцит ресурсного потенціалу в банківській системі України. Ключові слова: заощадження, нагромадження, банки, економічне зростання, посередники, фінансовий ринок, ресурси, трансформація, інвестиційний потенціал.Рассмотрены проблемы, особенности функционирования и взаимодействия участников финансового рынка Украины. Обосновано наличие внутренних финансовых источников формирования ресурсного потенциала отечественных банков, доказана их приоритетность для страны по сравнению с внешними источниками. Очерчены причины, которые предопределяют дефицит ресурсного потенциала в банковской системе Украины. Ключевые слова: сбережения, накопления, банки, экономический рост, посредники, финансовый рынок, ресурсы, трансформация, инвестиционный потенциал.The present paper examines topical problems related to the specific aspects of economic relations in the financial market of Ukraine. The relevance and selection of the theme stem from the fact that financial market as a specific organization form of cash flows takes a leading place in the economic mechanism of market economy. Agents of this market are engaged in a whole range of complex economic relations which in their turn play a key role in securing a dynamic and sustainable economic growth of a country. Development of the financial market and creation of adequate flexible and adaptive economic relations between its players are critical for Ukraine. This is explained by specific aspects of the economic system formation and reforming, which are related to undergoing an intersystem transformation stage. The indicated circumstances predetermined the goal and objectives of the study pursued, which come to examination of economic relations in the financial market of Ukraine, identification of the interaction specificity of various financial intermediaries in the accumulation process of idle cash and its transformation into the investment capital of national economy. Based on the results of the analysis conducted, it is established that unlike countries with developed financial systems, where the majority of institutional participants of the capital market are proportionally developed, it is the banking sector that dominates in Ukraine and has a determinant role in financing the economic development of the state. The availability of domestic financial resources for forming the resource potential of banks is substantiated, and their priority versus external resources for Ukraine is proved. The comparison of gross savings and gross capital formation allowed identifying certain problems as to transformation of the former into investment resources in Ukraine. The paper outlines some causes of a poor resource potential of national banking institutions. Keywords: savings, accumulation, banks, economic growth, intermediaries, financial market, resources, transformation, investment potential

    Hot-water immersion does not increase postprandial muscle protein synthesis rates during recovery from resistance-type exercise in healthy, young males

    Get PDF
    The purpose of this study was to assess the impact of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates during recovery from a single bout of resistance-type exercise in healthy, young men. Twelve healthy, adult men (age: 23 ± 1 y) performed a single bout of resistance-type exercise followed by 20 min of water immersion of both legs. One leg was immersed in hot water [46°C: hot-water immersion (HWI)], while the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine labeled milk protein with 45 g of carbohydrates. In addition, primed continuous L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5-h recovery period. Muscle temperature immediately after water immersion was higher in the HWI compared with the CON leg (37.5 ± 0.1 vs. 35.2 ± 0.2°C; P < 0.001). Incorporation of dietary protein-derived L-[1-13C]-phenylalanine into myofibrillar protein did not differ between the HWI and CON leg during the 5-h recovery period (0.025 ± 0.003 vs. 0.024 ± 0.002 MPE; P = 0.953). Postexercise myofibrillar protein synthesis rates did not differ between the HWI and CON leg based upon L-[1-13C]-leucine (0.050 ± 0.005 vs. 0.049 ± 0.002%/h; P = 0.815) and L-[ring-2H5]-phenylalanine (0.048 ± 0.002 vs. 0.047 ± 0.003%/h; P = 0.877), respectively. Hot-water immersion during recovery from resistance-type exercise does not increase the postprandial rise in myofibrillar protein synthesis rates. In addition, postexercise hot-water immersion does not increase the capacity of the muscle to incorporate dietary protein-derived amino acids in muscle tissue protein during subsequent recovery

    Protein synthesis rates of muscle, tendon, ligament, cartilage, and bone tissue in vivo in humans

    Get PDF
    Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and 0.09%/h. Though it is evident that other musculoskeletal tissues should also express some level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium. Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with muscle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa’s fat pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respectively). Basal protein synthesis rates in various musculoskeletal tissues are within the same range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per hour in vivo in humans

    Potato protein ingestion increases muscle protein synthesis rates at rest and during recovery from exercise in humans

    Get PDF
    Introduction Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. Methods In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-13C6]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. Results Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h−1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h−1, respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h−1 after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). Conclusions Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein

    DNA from Nails for Genetic Analyses in Large-Scale Epidemiologic Studies

    Get PDF
    BACKGROUND: Nails contain genomic DNA that can be used for genetic analyses, which is attractive for large epidemiologic studies that have collected or are planning to collect nail clippings. Study participants will more readily participate in a study when asked to provide nail samples than when asked to provide a blood sample. In addition, nails are easy and cheap to obtain and store compared with other tissues. METHODS: We describe our findings on toenail DNA in terms of yield, quality, genotyping a limited set of SNPs with the Sequenom MassARRAY iPLEX platform and high-density genotyping with the Illumina HumanCytoSNP_FFPE-12 DNA array (>262,000 markers). We discuss our findings together with other studies on nail DNA and we compare nails and other frequently used tissue samples as DNA sources. RESULTS: Although nail DNA is considerably degraded, genotyping a limited set of SNPs with the Sequenom MassARRAY iPLEX platform (average sample call rate, 97.1%) and high-density genotyping with the Illumina HumanCytoSNP_FFPE chip (average sample call rate, 93.8%) were successful. CONCLUSIONS: Nails are a suitable source of DNA for genotyping in large-scale epidemiologic studies, provided that methods are used that are suitable or optimized for degraded DNA. For genotyping through (next generation) sequencing where DNA degradation is less of an issue, nails may be an even more attractive DNA source, because it surpasses other sources in terms of ease and costs of obtaining and storing the samples. IMPACT: It is worthwhile to consider nails as a source of DNA for genotyping in large-scale epidemiologic studies. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology." Cancer Epidemiol Biomarkers Prev; 23(12); 2703-12. (c)2014 AACR

    Potato Protein Ingestion Increases Muscle Protein Synthesis Rates at Rest and during Recovery from Exercise in Humans

    Get PDF
    INTRODUCTION: Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-(13)C(6)]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS: Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h(−1) and from 0.021% ± 0.014% to 0.050% ± 0.012%·h(−1), respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h(−1) after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). CONCLUSIONS: Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein

    Ingestion of free amino acids compared with an equivalent amount of intact protein results in more rapid amino acid absorption and greater postprandial plasma amino acid availability without affecting muscle protein synthesis rates in young adults in a double-blind randomized trial

    Get PDF
    Background The rate of protein digestion and amino acid absorption determines the postprandial rise in circulating amino acids and modulates postprandial muscle protein synthesis rates. Objective We sought to compare protein digestion, amino acid absorption kinetics, and the postprandial muscle protein synthetic response following ingestion of intact milk protein or an equivalent amount of free amino acids. Methods Twenty-four healthy, young participants (mean ± SD age: 22 ± 3 y and BMI 23 ± 2 kg/m2; sex: 12 male and 12 female participants) received a primed continuous infusion of l-[ring-2H5]-phenylalanine and l-[ring-3,5–2H2]-tyrosine, after which they ingested either 30 g intrinsically l-[1–13C]-phenylalanine–labeled milk protein or an equivalent amount of free amino acids labeled with l-[1–13C]-phenylalanine. Blood samples and muscle biopsies were obtained to assess protein digestion and amino acid absorption kinetics (secondary outcome), whole-body protein net balance (secondary outcome), and mixed muscle protein synthesis rates (primary outcome) throughout the 6-h postprandial period. Results Postprandial plasma amino acid concentrations increased after ingestion of intact milk protein and free amino acids (both P < 0.001), with a greater increase following ingestion of the free amino acids than following ingestion of intact milk protein (P-time × treatment < 0.001). Exogenous phenylalanine release into plasma, assessed over the 6-h postprandial period, was greater with free amino acid ingestion (76 ± 9%) than with milk protein treatment (59 ± 10%; P < 0.001). Ingestion of free amino acids and intact milk protein increased mixed muscle protein synthesis rates (P-time < 0.001), with no differences between treatments (from 0.037 ± 0.015%/h to 0.053 ± 0.014%/h and 0.039 ± 0.016%/h to 0.051 ± 0.010%/h, respectively; P-time × treatment = 0.629). Conclusions Ingestion of a bolus of free amino acids leads to more rapid amino acid absorption and greater postprandial plasma amino acid availability than ingestion of an equivalent amount of intact milk protein. Ingestion of free amino acids may be preferred over ingestion of intact protein in conditions where protein digestion and amino acid absorption are compromised
    corecore