813 research outputs found

    Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests

    Full text link
    A complete discussion of tree-level flavor-changing effects in the Randall-Sundrum (RS) model with brane-localized Higgs sector and bulk gauge and matter fields is presented. The bulk equations of motion for the gauge and fermion fields, supplemented by boundary conditions taking into account the couplings to the Higgs sector, are solved exactly. For gauge fields the Kaluza-Klein (KK) decomposition is performed in a covariant R_xi gauge. For fermions the mixing between different generations is included in a completely general way. The hierarchies observed in the fermion spectrum and the quark mixing matrix are explained naturally in terms of anarchic five-dimensional Yukawa matrices and wave-function overlap integrals. Detailed studies of the flavor-changing couplings of the Higgs boson and of gauge bosons and their KK excitations are performed, including in particular the couplings of the standard W and Z bosons. A careful analysis of electroweak precision observables including the S and T parameters and the Zbb couplings shows that the simplest RS model containing only Standard Model particles and their KK excitations is consistent with all experimental bounds for a KK scale as low as a few TeV, if one allows for a heavy Higgs boson and/or for an ultra-violet cutoff below the Planck scale. The study of flavor-changing effects includes analyses of the non-unitarity of the quark mixing matrix, anomalous right-handed couplings of the W bosons, tree-level flavor-changing neutral current couplings of the Z and Higgs bosons, the rare decays t-->c(u)+Z and t-->c(u)+h, and the flavor mixing among KK fermions. The results obtained in this work form the basis for general calculations of flavor-changing processes in the RS model and its extensions.Comment: 70 pages, 12 figures. v2: Incorrect treatment of phases in zero-mode approximation corrected, and discussion of electroweak precision tests modified. v3: Additional minor modifications and typos corrected; version published in JHE

    Axiflavon-Higgs Unification

    Get PDF
    In this talk, a unified model of scalar particles that addresses the flavour hierarchies, solves the strong CP problem, delivers a dark matter candidate, and radiatively triggers electroweak symmetry breaking is discussed. The recently proposed axiflavon is embedded together with an (elementary) Goldstone Higgs-sector in a single multiplet (and thereby also a model of flavour and strong CP conservation for the latter is provided). Bounds on the axion decay constant follow from requiring a SM-like Higgs potential at low energies and are confronted with constraints from flavour physics and astrophysics. In the minimal implementation, the axion decay constant is restricted to fa≈(1011−1012)f_a \approx (10^{11}-10^{12}) GeV, while adding right-handed neutrinos allows for a heavy-axion model at lower energies, down to fa∼10f_a \sim 10 TeV

    Effect of magnetic field on the phase transition in a dusty plasma

    Full text link
    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.Comment: 9 pages, 5 figure

    Overvoltage characteristics in symmetrical monopolar HB MMC-HVDC configuration comprising long cable systems

    Get PDF
    This contribution focuses on high voltage direct current (HVDC) transmission systems comprising modular multilevel converters (MMC) equipped with half-bridge (HB) submodules and analyses cable voltage stresses during various station internal as well as dc side faults. In order to examine relevant overvoltage characteristics affecting HVDC cable systems, a systematic approach to evaluate overvoltage stresses is presented and an extensive set of time-domain simulations is analysed for schemes operating in symmetrical monopolar configuration. Obtained results are relevant for considerations on insulation co-ordination of HVDC cable systems and for a comprehensive definition of high voltage testing requirements

    PIN21 BUDGET IMPACT ANALYSIS OF UNIVERSAL VARICELLA VACCINATION IN GERMANY

    Get PDF

    Model dependence of single-energy fits to pion photoproduction data

    Full text link
    Model dependence of multipole analysis has been explored through energy-dependent and single-energy fits to pion photoproduction data. The MAID energy-dependent solution has been used as input for an event generator producing realistic pseudo data. These were fitted using the SAID parametrization approach to determine single-energy and energy-dependent solutions over a range of lab photon energies from 200 to 1200 MeV. The resulting solutions were found to be consistent with the input amplitudes from MAID. Fits with a χ\chi-squared per datum of unity or less were generally achieved. We discuss energy regions where consistent results are expected, and explore the sensitivity of fits to the number of included single- and double-polarization observables. The influence of Watson's theorem is examined in detail.Comment: 12 pages, 8 figure

    Two loop electroweak corrections to Bˉ→Xsγ\bar B\rightarrow X_s\gamma and Bs0→μ+μ−B_s^0\rightarrow \mu^+\mu^- in the B-LSSM

    Full text link
    The rare decays Bˉ→Xsγ\bar B\rightarrow X_s\gamma and Bs0→μ+μ−B_s^0\rightarrow \mu^+\mu^- are important to research new physics beyond standard model. In this work, we investigate two loop electroweak corrections to Bˉ→Xsγ\bar B\rightarrow X_s\gamma and Bs0→μ+μ−B_s^0\rightarrow \mu^+\mu^- in the minimal supersymmetric extension of the SM with local B−LB-L gauge symmetry (B-LSSM), under a minimal flavor violating assumption for the soft breaking terms. In this framework, new particles and new definition of squarks can affect the theoretical predictions of these two processes, with respect to the MSSM. Considering the constraints from updated experimental data, the numerical results show that the B-LSSM can fit the experimental data for the branching ratios of Bˉ→Xsγ\bar B\rightarrow X_s\gamma and Bs0→μ+μ−B_s^0\rightarrow \mu^+\mu^-. The results of the rare decays also further constrain the parameter space of the B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ

    Electroweak Constraints on Warped Geometry in Five Dimensions and Beyond

    Get PDF
    Here we consider the tree level corrections to electroweak (EW) observables from standard model (SM) particles propagating in generic warped extra dimensions. The scale of these corrections is found to be dominated by three parameters, the Kaluza-Klein (KK) mass scale, the relative coupling of the KK gauge fields to the Higgs and the relative coupling of the KK gauge fields to fermion zero modes. It is found that 5D spaces that resolve the hierarchy problem through warping typically have large gauge-Higgs coupling. It is also found in D>5D>5 where the additional dimensions are warped the relative gauge-Higgs coupling scales as a function of the warp factor. If the warp factor of the additional spaces is contracting towards the IR brane, both the relative gauge-Higgs coupling and resulting EW corrections will be large. Conversely EW constraints could be reduced by finding a space where the additional dimension's warp factor is increasing towards the IR brane. We demonstrate that the Klebanov Strassler solution belongs to the former of these possibilities.Comment: 18 pages, 3 figures (references added) version to appear in JHE

    The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics

    Full text link
    We reexamine the Randall-Sundrum (RS) model with enlarged gauge symmetry SU(2)_L x SU(2)_R x U(1)_X x P_LR in the presence of a brane-localized Higgs sector. In contrast to the existing literature, we perform the Kaluza-Klein (KK) decomposition within the mass basis, which avoids the truncation of the KK towers. Expanding the low-energy spectrum as well as the gauge couplings in powers of the Higgs vacuum expectation value, we obtain analytic formulas which allow for a deep understanding of the model-specific protection mechanisms of the T parameter and the left-handed Z-boson couplings. In particular, in the latter case we explain which contributions escape protection and identify them with the irreducible sources of P_LR symmetry breaking. We furthermore show explicitly that no protection mechanism is present in the charged-current sector confirming existing model-independent findings. The main focus of the phenomenological part of our work is a detailed discussion of Higgs-boson couplings and their impact on physics at the CERN Large Hadron Collider. For the first time, a complete one-loop calculation of all relevant Higgs-boson production and decay channels is presented, incorporating the effects stemming from the extended electroweak gauge-boson and fermion sectors.Comment: 74 pages, 13 figures, 3 tables. v2: Matches version published in JHE
    • …
    corecore