59 research outputs found

    The effect of cave illumination on bats

    Get PDF
    Artificial light at night has large impacts on nocturnal wildlife such as bats, yet its effect varies with wavelength of light, context, and across species involved. Here, we studied in two experiments how wild bats of cave-roosting species (Rhinolophus mehelyi, R. euryale, Myotis capaccinii and Miniopterus schreibersii) respond to LED lights of different colours. In dual choice experiments, we measured the acoustic activity of bats in response to neutral-white, red or amber LED at a cave entrance and in a flight room – mimicking a cave interior. In the flight room, M. capaccinii and M. schreibersii preferred red to white light, but showed no preference for red over amber, or amber over white light. In the cave entrance experiment, all light colours reduced the activity of all emerging species, yet red LED had the least negative effect. Rhinolophus species reacted most strongly, matching their refusal to fly at all under any light treatment in the flight room. We conclude that the placement and light colour of LED light should be considered carefully in lighting concepts for caves both in the interior and at the entrance. In a cave interior, red LED light could be chosen – if needed at all – for careful temporary illumination of areas, yet areas important for bats should be avoided based on the precautionary principle. At cave entrances, the high sensitivity of most bat species, particularly of Rhinolophus spp., towards light sources almost irrespective of colour, calls for utmost caution when illuminating cave entrances

    Optical Clocks in Space

    Get PDF
    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.Comment: Proc. III International Conference on Particle and Fundamental Physics in Space (SpacePart06), Beijing 19 - 21 April 2006, to appear in Nucl. Phys.

    Size constancy in bat biosonar?

    Get PDF
    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats

    Long-term results of radiotherapy for periarthritis of the shoulder: a retrospective evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate retrospectively the results of radiotherapy for periarthritis of the shoulder</p> <p>Methods</p> <p>In 1983–2004, 141 patients were treated, all had attended at least one follow-up examination. 19% had had pain for several weeks, 66% for months and 14% for years. Shoulder motility was impaired in 137/140 patients. Nearly all patients had taken oral analgesics, 81% had undergone physiotherapy, five patients had been operated on, and six had been irradiated. Radiotherapy was applied using regular anterior-posterior opposing portals and Co-60 gamma rays or 4 MV photons. 89% of the patients received a total dose of 6 Gy (dose/fraction of 1 Gy twice weekly, the others had total doses ranging from 4 to 8 Gy. The patients and the referring doctors were given written questionnaires in order to obtain long-term results. The mean duration of follow-up was 6.9 years [0–20 years].</p> <p>Results</p> <p>During the first follow-up examination at the end of radiotherapy 56% of the patients reported pain relief and improvement of motility. After in median 4.5 months the values were 69 and 89%, after 3.9 years 73% and 73%, respectively. There were virtually no side effects. In the questionnaires, 69% of the patients reported pain relief directly after radiotherapy, 31% up to 12 weeks after radiotherapy. 56% of the patients stated that pain relief had lasted for "years", in further 12% at least for "months".</p> <p>Conclusion</p> <p>Low-dose radiotherapy for periarthropathy of the shoulder was highly effective and yielded long-lasting improvement of pain and motility without side effects.</p

    The Signaller's Dilemma: A Cost–Benefit Analysis of Public and Private Communication

    Get PDF
    Understanding the diversity of animal signals requires knowledge of factors which may influence the different stages of communication, from the production of a signal by the sender up to the detection, identification and final decision-making in the receiver. Yet, many studies on signalling systems focus exclusively on the sender, and often ignore the receiver side and the ecological conditions under which signals evolve.We study a neotropical katydid which uses airborne sound for long distance communication, but also an alternative form of private signalling through substrate vibration. We quantified the strength of predation by bats which eavesdrop on the airborne sound signal, by analysing insect remains at roosts of a bat family. Males do not arbitrarily use one or the other channel for communication, but spend more time with private signalling under full moon conditions, when the nocturnal rainforest favours predation by visually hunting predators. Measurements of metabolic CO(2)-production rate indicate that the energy necessary for signalling increases 3-fold in full moon nights when private signalling is favoured. The background noise level for the airborne sound channel can amount to 70 dB SPL, whereas it is low in the vibration channel in the low frequency range of the vibration signal. The active space of the airborne sound signal varies between 22 and 35 meters, contrasting with about 4 meters with the vibration signal transmitted on the insect's favourite roost plant. Signal perception was studied using neurophysiological methods under outdoor conditions, which is more reliable for the private mode of communication.Our results demonstrate the complex effects of ecological conditions, such as predation, nocturnal ambient light levels, and masking noise levels on the performance of receivers in detecting mating signals, and that the net advantage or disadvantage of a mode of communication strongly depends on these conditions

    The Cercal Organ May Provide Singing Tettigoniids a Backup Sensory System for the Detection of Eavesdropping Bats

    Get PDF
    Conspicuous signals, such as the calling songs of tettigoniids, are intended to attract mates but may also unintentionally attract predators. Among them bats that listen to prey-generated sounds constitute a predation pressure for many acoustically communicating insects as well as frogs. As an adaptation to protect against bat predation many insect species evolved auditory sensitivity to bat-emitted echolocation signals. Recently, the European mouse-eared bat species Myotis myotis and M. blythii oxygnathus were found to eavesdrop on calling songs of the tettigoniid Tettigonia cantans. These gleaning bats emit rather faint echolocation signals when approaching prey and singing insects may have difficulty detecting acoustic predator-related signals. The aim of this study was to determine (1) if loud self-generated sound produced by European tettigoniids impairs the detection of pulsed ultrasound and (2) if wind-sensors on the cercal organ function as a sensory backup system for bat detection in tettigoniids. We addressed these questions by combining a behavioral approach to study the response of two European tettigoniid species to pulsed ultrasound, together with an electrophysiological approach to record the activity of wind-sensitive interneurons during real attacks of the European mouse-eared bat species Myotis myotis. Results showed that singing T. cantans males did not respond to sequences of ultrasound pulses, whereas singing T. viridissima did respond with predominantly brief song pauses when ultrasound pulses fell into silent intervals or were coincident with the production of soft hemi-syllables. This result, however, strongly depended on ambient temperature with a lower probability for song interruption observable at 21°C compared to 28°C. Using extracellular recordings, dorsal giant interneurons of tettigoniids were shown to fire regular bursts in response to attacking bats. Between the first response of wind-sensitive interneurons and contact, a mean time lag of 860 ms was found. This time interval corresponds to a bat-to-prey distance of ca. 72 cm. This result demonstrates the efficiency of the cercal system of tettigoniids in detecting attacking bats and suggests this sensory system to be particularly valuable for singing insects that are targeted by eavesdropping bats

    Do horseshoe bats complement their echolocation with listening for prey-generated sounds?

    No full text
    Echolocation is a highly sophisticated sensory system for actively probing light-deficient environments. However, due to the stroboscopic and directional emission of the calls and the strong attenuation of ultrasonic frequencies, the space that can be probed by biosonar is limited both temporally and spatially. We hypothesised that this limitation will favour the opportunistic use of additional information for prey detection, such as prey-generated rustling sounds, and that bats thus exploit a much wider range of environ- mental information than previously believed. We tested this hypothesis in greater horseshoe bats (Rhinolophus ferrumequinum), whose echolocation is specialised for the detection of fluttering insects, but spatially strongly limited due to high call frequencies. We predicted that bats will react to prey-generated rustling sounds by steering their sonar beam towards the position of the sound for further biosonar-based evaluation. To present prey rustling sounds and monitor bat echolocation, we developed a spherical three loudspeaker - eight microphone array. Each loudspeaker was placed next to one microphone and was symmetrically surrounded by three other microphones. Bats were trained to perch in the centre of the spherical array. Per trial, we played back a rustling sound of a moth fluttering in vegetation from one of the loudspeakers, or alternatively phase-randomized or amplitude-inverted versions of the recordings to control for temporal and spectral cues. We recorded the bat’s echolocation behaviour simultaneously with all eight microphones for offline analysis of relative call intensity and thus call direction
    corecore