362 research outputs found
Size reduction of complex networks preserving modularity
The ubiquity of modular structure in real-world complex networks is being the
focus of attention in many trials to understand the interplay between network
topology and functionality. The best approaches to the identification of
modular structure are based on the optimization of a quality function known as
modularity. However this optimization is a hard task provided that the
computational complexity of the problem is in the NP-hard class. Here we
propose an exact method for reducing the size of weighted (directed and
undirected) complex networks while maintaining invariant its modularity. This
size reduction allows the heuristic algorithms that optimize modularity for a
better exploration of the modularity landscape. We compare the modularity
obtained in several real complex-networks by using the Extremal Optimization
algorithm, before and after the size reduction, showing the improvement
obtained. We speculate that the proposed analytical size reduction could be
extended to an exact coarse graining of the network in the scope of real-space
renormalization.Comment: 14 pages, 2 figure
The cellular heat shock response monitored by chemical exchange saturation transfer MRI
CEST-MRI of the rNOE signal has been demonstrated in vitro to be closely linked to the protein conformational state. As the detectability of denaturation and aggregation processes on a physiologically relevant scale in living organisms has yet to be verified, the aim of this study was to perform heat-shock experiments with living cells to monitor the cellular heat-shock response of the rNOE CEST signal. Cancer cells (HepG2) were dynamically investigated after a mild, non-lethal heat-shock of 42 °C for 20 min using an MR-compatible bioreactor system at 9.4 T. Reliable and fast high-resolution CEST imaging was realized by a relaxation-compensated 2-point contrast metric. After the heat-shock, a substantial decrease of the rNOE CEST signal by 8.0 ± 0.4% followed by a steady signal recovery within a time of 99.1 ± 1.3 min was observed in two independent trials. This continuous signal recovery is in coherence with chaperone-induced refolding of heat-shock induced protein aggregates. We demonstrated that protein denaturation processes influence the CEST-MRI signal on a physiologically relevant scale. Thus, the protein folding state is, along with concentration changes, a relevant physiological parameter for the interpretation of CEST signal changes in diseases that are associated with pathological changes in protein expression, like cancer and neurodegenerative diseases
Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults
Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here
Marginal Taxes: A Good or a Bad for Wages?: The Incidence of the Structure of Income and Labor Taxes on Wages
Empirical evidence so far found ambiguous results for the direction of effect of marginal income tax rates on employee remuneration. Based on the GSOEP data from 2002 through 2008 this study analyzes the impact of the marginal tax load on the employee side on the wage rate also allowing average tax rates and employer payroll taxes to play a role. Instrumental variable estimation based on counterfactual tax rates simulated in a highly detailed microsimulation model (STSM) heals the endogeneity problem of the tax variables with regard to wages. Estimations in first differences show that marginal taxes overall have a negative impact on wages. But this effect is not uniform along the wage distribution; while the negative effect of marginal tax rates prevails in the lower part of the distribution, observations beyond the median benefit from higher tax rates at the margin
Adaptive Evolution of Staphylococcus aureus during Chronic Endobronchial Infection of a Cystic Fibrosis Patient
The molecular adaptation of Staphylococcus aureus to its host during chronic infection is not well understood. Comparative genome sequencing of 3 S. aureus isolates obtained sequentially over 26 months from the airways of a cystic fibrosis patient, revealed variation in phage content, and genetic polymorphisms in genes which influence antibiotic resistance, and global regulation of virulence. The majority of polymorphisms were isolate-specific suggesting the existence of an heterogeneous infecting population that evolved from a single infecting strain of S. aureus. The genetic variation identified correlated with differences in growth rate, hemolytic activity, and antibiotic sensitivity, implying a profound effect on the ecology of S. aureus. In particular, a high frequency of mutations in loci associated with the alternate transcription factor SigB, were observed. The identification of genes under diversifying selection during long-term infection may inform the design of novel therapeutics for the control of refractory chronic infections
Positional Income Concerns: Prevalence and Relationship with Personality and Economic Preferences
This paper presents detailed evidence about who compares to whom in terms of relative income. We rely on representative survey data on the importance of income comparisons vis-á-vis seven reference groups, allowing us to exploit within-subject heterogeneity. We explore the prevalence and determinants of positional income concerns, investigating the role of personality and economic preferences. Our results establish robust relationships between positional income concerns and the personality traits agreeableness, conscientiousness, and neuroticism, some of which depend on the reference group. Furthermore, risk and fairness preferences are significantly correlated with positional income concerns
Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island
Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus
Income tax buyouts and income tax evasion
A tax buyout is a contract between tax authorities and a tax payer which reduces the marginal income tax rate in exchange for a lump-sum payment. While previous contributions have focussed on labour supply, we consider the interaction with tax evasion and show that a buyout can increase expected tax revenues. This will be the case if (1) the audit probability is constant and the penalty for evasion is a function of undeclared income or (2) the penalty depends on the amount of taxes evaded, and authorities use information about income generated by the decision about a tax buyout offer when setting audit probabilities. Since individuals will only utilise a tax buyout if they are better off, higher tax revenues imply that such contracts can be Pareto-improving
Substrate Cooperativity in Marine Luciferases
Marine luciferases are increasingly used as reporters to study gene regulation. These luciferases have utility in bioluminescent assay development, although little has been reported on their catalytic properties in response to substrate concentration. Here, we report that the two marine luciferases from the copepods, Gaussia princeps (GLuc) and Metridia longa (MLuc) were found, surprisingly, to produce light in a cooperative manner with respect to their luciferin substrate concentration; as the substrate concentration was decreased 10 fold the rate of light production decreased 1000 fold. This positive cooperative effect is likely a result of allostery between the two proposed catalytic domains found in Gaussia and Metridia. In contrast, the marine luciferases from Renilla reniformis (RLuc) and Cypridina noctiluca (CLuc) demonstrate a linear relationship between the concentration of their respective luciferin and the rate of light produced. The consequences of these enzyme responses are discussed
- …