3,130 research outputs found

    Mean first-passage times for an ac-driven magnetic moment of a nanoparticle

    Full text link
    The two-dimensional backward Fokker-Planck equation is used to calculate the mean first-passage times (MFPTs) of the magnetic moment of a nanoparticle driven by a rotating magnetic field. It is shown that a magnetic field that is rapidly rotating in the plane {\it perpendicular} to the easy axis of the nanoparticle governs the MFPTs just in the same way as a static magnetic field that is applied {\it along} the easy axis. Within this framework, the features of the magnetic relaxation and net magnetization of systems composed of ferromagnetic nanoparticles arising from the action of the rotating field are revealed.Comment: 7 pages, 1 figur

    Optimal discrete stopping times for reliability growth tests

    Get PDF
    Often, the duration of a reliability growth development test is specified in advance and the decision to terminate or continue testing is conducted at discrete time intervals. These features are normally not captured by reliability growth models. This paper adapts a standard reliability growth model to determine the optimal time for which to plan to terminate testing. The underlying stochastic process is developed from an Order Statistic argument with Bayesian inference used to estimate the number of faults within the design and classical inference procedures used to assess the rate of fault detection. Inference procedures within this framework are explored where it is shown the Maximum Likelihood Estimators possess a small bias and converges to the Minimum Variance Unbiased Estimator after few tests for designs with moderate number of faults. It is shown that the Likelihood function can be bimodal when there is conflict between the observed rate of fault detection and the prior distribution describing the number of faults in the design. An illustrative example is provided

    Rapidly driven nanoparticles: Mean first-passage times and relaxation of the magnetic moment

    Full text link
    We present an analytical method of calculating the mean first-passage times (MFPTs) for the magnetic moment of a uniaxial nanoparticle which is driven by a rapidly rotating, circularly polarized magnetic field and interacts with a heat bath. The method is based on the solution of the equation for the MFPT derived from the two-dimensional backward Fokker-Planck equation in the rotating frame. We solve these equations in the high-frequency limit and perform precise, numerical simulations which verify the analytical findings. The results are used for the description of the rates of escape from the metastable domains which in turn determine the magnetic relaxation dynamics. A main finding is that the presence of a rotating field can cause a drastic decrease of the relaxation time and a strong magnetization of the nanoparticle system. The resulting stationary magnetization along the direction of the easy axis is compared with the mean magnetization following from the stationary solution of the Fokker-Planck equation.Comment: 24 pages, 4 figure

    Strain induced electrochemical behaviors of ionic liquid electrolytes in an electrochemical double layer capacitor: Insights from molecular dynamics simulations.

    Get PDF
    Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations. [Abstract copyright: © 2023 Author(s). Published under an exclusive license by AIP Publishing.

    Functional evaluation and testing of a newly developed Teleost’s Fish Otolith derived biocomposite coating for healthcare

    Get PDF
    Polymers such as polycaprolactone (PCL) possess biodegradability, biocompatibility and affinity with other organic media that makes them suitable for biomedical applications. In this work, a novel biocomposite coating was synthesised by mixing PCL with layers of calcium phosphate (hydroxyapatite, brushite and monetite) from a biomineral called otolith extracted from Teleost fish (Plagioscion Squamosissimus) and multiwalled carbon nanotubes in different concentrations (0.5, 1.0 and 1.5 g/L). The biocomposite coating was deposited on an osteosynthesis material Ti6Al4V by spin coating and various tests such as Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), scratch tests, MTT reduction cytotoxicity, HOS cell bioactivity (human osteosarcoma) by alkaline phosphatase (ALP) and fluorescence microscopy were performed to comprehensively evaluate the newly developed biocoating. It was found that an increase in the concentration of carbon nanotube induced microstructural phase changes of calcium phosphate (CP) leading to the formation of brushite, monetite and hydroxyapatite. While we discovered that an increase in the concentration of carbon nanotube generally improves the adhesion of the coating with the substrate, a certain threshold exists such that the best deposition surfaces were obtained as PCL/CP/CNT 0.0 g/L and PCL/CP/CNT 0.5 g/L

    Oscillatory behaviour in a lattice prey-predator system

    Full text link
    Using Monte Carlo simulations we study a lattice model of a prey-predator system. We show that in the three-dimensional model populations of preys and predators exhibit coherent periodic oscillations but such a behaviour is absent in lower-dimensional models. Finite-size analysis indicate that amplitude of these oscillations is finite even in the thermodynamic limit. In our opinion, this is the first example of a microscopic model with stochastic dynamics which exhibits oscillatory behaviour without any external driving force. We suggest that oscillations in our model are induced by some kind of stochastic resonance.Comment: 7 pages, 10 figures, Phys.Rev.E (Nov. 1999

    Universality of weak selection

    Full text link
    Weak selection, which means a phenotype is slightly advantageous over another, is an important limiting case in evolutionary biology. Recently it has been introduced into evolutionary game theory. In evolutionary game dynamics, the probability to be imitated or to reproduce depends on the performance in a game. The influence of the game on the stochastic dynamics in finite populations is governed by the intensity of selection. In many models of both unstructured and structured populations, a key assumption allowing analytical calculations is weak selection, which means that all individuals perform approximately equally well. In the weak selection limit many different microscopic evolutionary models have the same or similar properties. How universal is weak selection for those microscopic evolutionary processes? We answer this question by investigating the fixation probability and the average fixation time not only up to linear, but also up to higher orders in selection intensity. We find universal higher order expansions, which allow a rescaling of the selection intensity. With this, we can identify specific models which violate (linear) weak selection results, such as the one--third rule of coordination games in finite but large populations.Comment: 12 pages, 3 figures, accepted for publication in Physical Review

    A semi-parametric approach to estimate risk functions associated with multi-dimensional exposure profiles: application to smoking and lung cancer

    Get PDF
    A common characteristic of environmental epidemiology is the multi-dimensional aspect of exposure patterns, frequently reduced to a cumulative exposure for simplicity of analysis. By adopting a flexible Bayesian clustering approach, we explore the risk function linking exposure history to disease. This approach is applied here to study the relationship between different smoking characteristics and lung cancer in the framework of a population based case control study
    corecore