15 research outputs found

    FragIdent – Automatic identification and characterisation of cDNA-fragments

    Get PDF
    BACKGROUND: Many genetic studies and functional assays are based on cDNA fragments. After the generation of cDNA fragments from an mRNA sample, their content is at first unknown and must be assigned by sequencing reactions or hybridisation experiments. Even in characterised libraries, a considerable number of clones are wrongly annotated. Furthermore, mix-ups can happen in the laboratory. It is therefore essential to the relevance of experimental results to confirm or determine the identity of the employed cDNA fragments. However, the manual approach for the characterisation of these fragments using BLAST web interfaces is not suited for larger number of sequences and so far, no user-friendly software is publicly available. RESULTS: Here we present the development of FragIdent, an application for the automatic identification of open reading frames (ORFs) within cDNA-fragments. The software performs BLAST analyses to identify the genes represented by the sequences and suggests primers to complete the sequencing of the whole insert. Gene-specific information as well as the protein domains encoded by the cDNA fragment are retrieved from Internet-based databases and included in the output. The application features an intuitive graphical interface and is designed for researchers without any bioinformatics skills. It is suited for projects comprising up to several hundred different clones. CONCLUSION: We used FragIdent to identify 84 cDNA clones from a yeast two-hybrid experiment. Furthermore, we identified 131 protein domains within our analysed clones. The source code is freely available from our homepage at

    Pathogenic Polyglutamine Tracts Are Potent Inducers of Spontaneous Sup35 and Rnq1 Amyloidogenesis

    Get PDF
    © 2010 Goehler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedDOI:10.1371/journal.pone.0009642The glutamine/asparagine (Q/N)-rich yeast prion protein Sup35 has a low intrinsic propensity to spontaneously self-assemble into ordered, β-sheet-rich amyloid fibrils. In yeast cells, de novo formation of Sup35 aggregates is greatly facilitated by high protein concentrations and the presence of preformed Q/N-rich protein aggregates that template Sup35 polymerization. Here, we have investigated whether aggregation-promoting polyglutamine (polyQ) tracts can stimulate the de novo formation of ordered Sup35 protein aggregates in the absence of Q/N-rich yeast prions. Fusion proteins with polyQ tracts of different lengths were produced and their ability to spontaneously self-assemble into amlyloid structures was analyzed using in vitro and in vivo model systems. We found that Sup35 fusions with pathogenic (≥54 glutamines), as opposed to non-pathogenic (19 glutamines) polyQ tracts efficiently form seeding-competent protein aggregates. Strikingly, polyQ-mediated de novo assembly of Sup35 protein aggregates in yeast cells was independent of pre-existing Q/N-rich protein aggregates. This indicates that increasing the content of aggregation-promoting sequences enhances the tendency of Sup35 to spontaneously self-assemble into insoluble protein aggregates. A similar result was obtained when pathogenic polyQ tracts were linked to the yeast prion protein Rnq1, demonstrating that polyQ sequences are generic inducers of amyloidogenesis. In conclusion, long polyQ sequences are powerful molecular tools that allow the efficient production of seeding-competent amyloid structures

    Toward a successful clinical neuroproteomics : the 11th HUPO Brain Proteome Project Workshop 3 March, 2009, Kolymbari, Greece

    Get PDF
    The HUPO Brain Proteome Project (HUPO BPP) held its 11th workshop in Kolymbari on March 3, 2009. The principal aim of this project is to obtain a better understanding of neurodiseases and ageing, with the ultimate objective of discovering prognostic and diagnostic biomarkers, in addition to the development of novel diagnostic techniques and new medications. The attendees came together to discuss sub-project progress in the clinical neuroproteomics of human or mouse models of Alzheimer's and Parkinson's disease, and to define the needs and guidelines required for more advanced proteomics approaches. With the election of new steering committees, the members of the HUPO BPP elaborated an actual plan promoting activities, outcomes, and future directions of the HUPO BPP to acquire new funding and new participants

    A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells.

    No full text
    Genetic high throughput screens have yielded large sets of potential protein-protein interactions now to be verified and further investigated. Here we present a simple assay to directly visualize protein-protein interactions in single living cells. Using a modified lac repressor system, we tethered a fluorescent bait at a chromosomal lac operator array and assayed for co-localization of fluorescent prey fusion proteins. With this fluorescent two-hybrid assay we successfully investigated the interaction of proteins from different subcellular compartments including nucleus, cytoplasm, and mitochondria. In combination with an S phase marker we also studied the cell cycle dependence of protein-protein interactions. These results indicate that the fluorescent two-hybrid assay is a powerful tool to investigate protein-protein interactions within their cellular environment and to monitor the response to external stimuli in real time

    Sequential high-content profiling of the IgG-autoantibody repertoire reveals novel antigens in rheumatoid arthritis

    No full text
    BACKGROUND: The aim was to identify novel diagnostic autoantibody candidates for rheumatoid arthritis (RA) by comprehensive screening for autoreactivity. METHOD: We incubated 5892 recombinant proteins coupled to fluorescent beads, with patients’ sera for the detection of IgG-autoantibodies in three independent patient cohorts: A (n = 72 patients with established RA); B/B- (n = 116 patients with early RA (B) and n = 51 CCP-negative patients with early RA from B (B-)); and C (n = 184 patients with early seronegative RA), in comparison to matched healthy controls. Intersects of significantly increased autoantibodies as determined by the Mann-Whitney test were sought. RESULT: Screening of 5892 antigens in RA cohorts A and B, or the seronegative cohorts B- and C revealed intersects of 23 and 13 significantly increased autoantibodies, respectively. Reactivity to three antigens was increased in all cohorts tested: N-acetylglucosamine-1-phosphate transferase, gamma subunit (GNPTG), heterogeneous nuclear ribonucleoprotein A1-like 2 (HNRNPA1), and insulin-like growth factor binding protein 2 (IGFBP2). CONCLUSIONS: Comprehensive sequential screening for autoantibodies reveals novel candidates for diagnostic markers in both seropositive and seronegative RA and suggests new fields of research into the pathogenesis of RA
    corecore