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1 Introduction and preliminaries

GDM is a situation faced when a number of experts work together to

find the best alternative(s) from a set of feasible alternatives. Each expert

may have exclusive inspirations or objectives and a different decision proce-

dure, but have a common interest in approaching to select the “best” option(s).

Preference relation is the most common representation format used in GDM

because it is a valuable tool in modeling decision processes, when we have to

combine experts’ preferences into group preferences [6, 14, 15]. In a preference

relation an expert assigns a numerical value to every pair of alternatives that

reflects some degree of preference of the first alternative over the second alter-

native. Mainly two types of preference relations have been used to develop the

decision models; multiplicative preference relations (MPRs) [2, 14], and fuzzy

preference relations (FPRs) [6, 16].

The popular preference relations, which are being used to express an ex-

pert’s preferences over alternatives, are FPRs. In a decision making procedure,
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an expert mostly needs to compare a finite set of alternatives  ( = 1 2  )

and construct an FPR [6, 13, 16, 17]. However, an expert may have imprecise

information for the preference degrees of one alternative over another and it

may not always be possible to estimate his/her preference by means of an

exact numerical value. In such a situation, an expert constructs an IVFPR.

In 2004, Z. S. Xu defined the notion of compatibility degree of two IVF-

PRs and showed the compatible connection among individual and collective

IVFPRs [18]. In 2005, F. Herrera et al. established an aggregation process for

combining IVFPRs with other forms of information as; numerical preference

relation (NPR) and linguistic preference relation (LPR) [7]. In 2007, Y. Jiang

proposed a technique to measure the similarity degree of two IVFPRs and

used the error-propagation rule to find the priority vector of the accumulated

IVFPRs [8]. In 2008, Z. S. Xu and Chen developed some linear programming

models to derive the priority weights from several IVFPRs [20].

All the above researches focused on the IVFPRs with complete informa-

tion. However, in DM problems such situations are unavoidable in which an

expert does not have comprehensive information of the problem because of

time constraint, lack of knowledge and the expert’s limited expertise within

problem domain [1, 3, 5, 10, 11, 19, 22, 24]. Consequently, the expert may

not be able to give his/her opinion about specific traits of the problem, and

hence an incomplete preference relation would be constructed. In literature,

researches based on incomplete FPRs have been given, but there are only few

researches in GDM related to incomplete IVFPRs [23].

In this paper, a new technique for GDM by using incomplete IVFPRs is

developed. Obviously, the consistent information is more applicable or impor-

tant than the information having ambiguities, consistency is linked with def-

inite transitivity properties. Several properties have been endorsed to model

transitivity of FPRs, one of these properties is the max-min transitivity. In
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this paper, a procedure, based on min-transitivity property is proposed to

determine unknown interval-valued preferences of one alternative over others

and further, it is extended to develop an algorithm for GDM to select the best

alternative.

Definition 1.1. [4] An interval-valued fuzzy set  on a universe  is defined

as:

 = {( [− +])| ∈  [− +] ∈ ([0 1])}

where ([0 1]) = {[− +] ⊆ [0 1] with − ≤ +}.
Arithmetic operations can be performed on closed intervals . The following

formulae can be used for all  ∈ ([0 1]) ( = [− +] and  = [− +])

[12]:

•  + = [− + − + + +],

•  − = [− − + + − −],

•  · = [min(−− −+ +− ++)max(−− −+ +− ++)],

•  = [− +] · [ 1
+
 1
− ] if 0 ∈ [− +].

Definition 1.2. [4] Let  be a universe and  and  two interval-valued

fuzzy sets. The inclusion of  into  is defined as:  ⊆  if and only if

() ⊆ () for all  ∈  and the equality between  and  is defined as:

 =  if and only if () = () for all  ∈  .

Definition 1.3. [9] A triangular norm (t-norm)  is an increasing, associative,

commutative and [0 1]× [0 1]→ [0 1] mapping satisfying:  (1 ) =  for all

 ∈ [0 1].
The t-norm to be used in this paper is  ( ) = min( ) The concept of a

t-norm on [0 1] can be extended to subintervals of [0 1].
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Definition 1.4. An extended t-norm, , is an increasing, symmetric, asso-

ciative and ([0 1])× ([0 1])→ ([0 1]) mappings that satisfies:

([1 1] [
− +]) = [− +] for all [− +] ∈ ([0 1])

Let  be a triangular norm. The mapping  defined as:

([
− +] [− +]) = [ (− −)  (+ +)]

for [− +], [− +] ∈ ([0 1]) is an extended t-norm on (([0 1])⊆), where
⊆ represents the crisp set inclusion.
The extended interval t-norm corresponding to the minimum-operator can

be computed by:

min([
− +] [− +]) = [min(− −)min(+ +)] (1)

Definition 1.5. [15] A fuzzy preference relation over a set of alternatives,

 = {1 2 3  }, is a fuzzy set on the product set  × , i.e., it is

characterized by a membership function  :  × → [0 1].

According to Definition 1.5, a fuzzy preference relation  on  can be

conveniently expressed by an  ×  matrix  = ()×, where  denotes

the degree of preference of alternative  to the alternative  with  ∈ [0 1]
 = 05  +  = 1 (additive reciprocity) for 1 ≤  ≤  and 1 ≤  ≤ .

If  = 05 then there is no difference between the alternatives  and . If

  05 then alternative  is prefered over the alternative . If  = 1

then the alternative  is definitely preferred over the alternative .

Definition 1.6. [18] Let  = ()× be a fuzzy preference relation over

the set of alternatives  = {1 2 3  } where  = [−  + ] 0 ≤ − ≤
+ ≤ 1  = [1 1] −  and  = [05 05] for all   ∈  , then  is called

interval-valued fuzzy preference relation

Definition 1.7. An IVFPR  is said to be min-consistent, if for all   and

 belonging to {1 2 3  } it holds:

 ≥ min( ) (min -transitivity)
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Definition 1.8. An IVFPR relation  = ()× is said to be incomplete if

it contains at least one unknown preference value  for which the expert has

no idea about the degree of preference of alternative  over the alternative 

2 Method to repair an incomplete IVFPR

This section presents a new technique to estimate missing values in an in-

complete IVFPR. Further, the algorithm is used to construct a min-consistent

matrix. In order to determine unknown values in an incomplete IVFPR

 = ()×, the pairs of alternatives for known and unknown preference

values are represented by the following sets:

 = {( )| is known} (2)

 = {( )| is unknown} (3)

where the preference value of alternative  over  belongs to the family of

closed subintervals of [0 1] (i.e.,  ∈ ([0 1])). Since  = [1 1] −   =

[05 05] for 1 ≤  ≤  and 1 ≤  ≤ , therefore, the min-transitivity of

definition 1.7 can be written as:

 ≥ min( );  ≥ min(1−  );  ≥ min( 1− )

(4)

Hence, the following sets can be defined to determine the unknown preference

value  of alternative  over alternative :

1 = {|( ) ∈   ( ) ∈  and ( ) ∈ } (5)

2 = {|( ) ∈   ( ) ∈  and ( ) ∈ } (6)

3 = {|( ) ∈   ( ) ∈  and ( ) ∈ } (7)

for  = {1 2 3  },  = {1 2 3  } and  = {1 2 3  }. Based on
(5),(6) and (7), we can determine the unknown preference value  for  over
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 as follows:

 =
1 + 2 + 3

3
 (8)

where

1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|1

|
X
∈1



min( ) if |1| 6= 0

[05 05] otherwise

(9)

2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|2

|
X
∈2



min([1 1]−  ) if |2| 6= 0

[05 05] otherwise

(10)

3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|3

|
X
∈3



min( [1 1]− ) if |3| 6= 0

[05 05] otherwise

(11)

where |1| |2| and |3| are the cardinalities of the sets 1 
2
 and 3

respectively.


0
 =  ∪ {( )} (12)


0
 =  − {( )} (13)

To achieve min-consistency of the IVFPR , following scaling conditions will

be used:

(i) If − + +  1 and + + −  1, then

 =

"
− +

1− (− + +)

2
 + +

1− (+ + −)

2

#
(14a)

and

 =

"
− +

1− (+ + −)

2
 + +

1− (− + +)

2

#
 (14b)

(ii) If − + +  1 and + + −  1, then

 =

"
− +

1− (− + +)

2
 + −

+ + − − 1
2

#
(15a)
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and

 =

"
− −

+ + − − 1
2

 + +
1− (− + +)

2

#
 (15b)

(iii) If − + +  1 and + + −  1, then

 =

"
− −

− + + − 1
2

 + +
1− (+ + −)

2

#
(16a)

and

 =

"
− +

1− (+ + −)

2
 + −

− + + − 1
2

#
 (16b)

(iv) If − + +  1 and + + −  1, then

 =

"
− −

− + + − 1
2

 + −
+ + − − 1

2

#
(17a)

and

 =

"
− −

+ + − − 1
2

 + −
− + + − 1

2

#
 (17b)

Example 2.1. Let  = ()4×4 be an incomplete IVFPR for the alternatives

1 2 3 and 4, given as follows:

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] 12 [04 06] [03 07]

21 [05 05] [07 08] 24

[04 06] [02 03] [05 05] [03 04]

[03 07] 42 [06 07] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 12 21 24 and 42 are unknown preference values. Now applying (2)-

(13) to estimate the unknown preference values for the alternative  over ,

1 ≤  ≤ 4 and 1 ≤  ≤ 4, as follows:

 = {(1 1) (1 3) (1 4) (2 2) (2 3) (3 1) (3 2) (3 3) (3 4) (4 1)
(4 3) (4 4)}

 = {(1 2) (2 1) (2 4) (4 2)}
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112 = {3} 212 = {3} 312 = {3}
112 = min(13 32) = min([04 06] [02 03]) = [02 03]

212 = min([1 1]− 31 32) = min([04 06] [02 03]) = [02 03]

312 = min(13 [1 1]− 23) = min([04 06] [02 03]) = [02 03]

12 =
1

3
(112 + 212 + 312) = [02 03]


0
 = {(1 1) (1 2) (1 3) (1 4) (2 2) (2 3) (3 1) (3 2) (3 3) (3 4)

(4 1) (4 3) (4 4)}


0
 =  − {(1 2)} = {(2 1) (2 4) (4 2)}

121 = {3} 221 = {1 3} 321 = {2 3}
121 = min(23 31) = min([07 08] [04 06]) = [04 06]

221 =
1

2
[min([1 1]− 12 11) + min([1 1]− 32 31)]

=
1

2
[min([07 08] [05 05]) + min([07 08] [04 06])]

=
1

2
[[05 05] + [04 06]] = [045 055]

321 =
1

2
[min(22 [1 1]− 12) + min(23 [1 1]− 13)]

=
1

2
[min([05 05] [07 08]) + min([07 08] [04 06]]

=
1

2
[[05 05] + [04 06]] = [045 055]

21 =
1

3
(121 + 221 + 321) = [0433 0567]


00
 = {(1 1) (1 2) (1 3) (1 4) (2 1) (2 2) (2 3) (3 1) (3 2) (3 3) (3 4)

(4 1) (4 3) (4 4)}


00
 = 

0 − {(2 1)} = {(2 4) (4 2)}
124 = {1 3} 224 = {1 3} 324 = {1 3}
124 =

1

2
[min(21 14) + min(23 34)]

=
1

2
[min([0433 0567] [03 07]) + min([07 08] [03 04])]

=
1

2
[[03 0567] + [03 04]] = [03 0484]
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224 =
1

2
[min([1 1]− 12 14) + min([1 1]− 32 34)]

=
1

2
[min([07 08] [03 07]) + min([07 08] [03 04])]

=
1

2
[[03 07] + [03 04]] = [03 055]

324 =
1

2
[min(21 [1 1]− 41) + min(23 [1 1]− 43)]

=
1

2
[min([0433 0567] [03 07]) + min([07 08] [03 04])]

=
1

2
[[03 0567] + [03 04]] = [03 0484]

24 =
1

3
(124 + 224 + 324) = [03 0506]


000
 = {(1 1) (1 2) (1 3) (1 4) (2 1) (2 2) (2 3) (2 4) (3 1) (3 2) (3 3)

(3 4) (4 1) (4 3) (4 4)}


000
 = 

00 − {(2 4)} = {(4 2)}
142 = {1 3} 242 = {1 2 3} 342 = {1 3 4}
142 =

1

2
[min(41 12) + min(43 32)]

=
1

2
[min([03 07] [02 03]) + min([06 07] [02 03])]

=
1

2
[[02 03] + [02 03]] = [02 03]

242 =
1

3
[min([1 1]− 14 12) + min([1 1]− 24 22) + min([1 1]− 34 32)]

=
1

3
[[02 03] + [05 0494] + [02 03]]

= [0298 0367]

342 =
1

3
[min(41 [1 1]− 21) + min(43 [1 1]− 23) + min(44 [1 1]− 24)]

=
1

3
[[03 0567] + [02 03] + [0494 05]]

= [0331 0456]

42 =
1

3
(142 + 242 + 342) = [0276 0374]


0000
 = {(1 1) (1 2) (1 3) (1 4) (2 1) (2 2) (2 3) (2 4) (3 1) (3 2) (3 3)

(3 4) (4 1) (4 2) (4 3) (4 4)}


0000
 = 
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Hence, the complete IVFPR is

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] [02 03] [04 06] [03 07]

[0433 0567] [05 05] [07 08] [03 0506]

[04 06] [02 03] [05 05] [03 04]

[03 07] [0276 0374] [06 07] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

By applying scaling condition on (18),  becomes a min-consistent fuzzy pref-

erence relation
e
 as follows:

e
 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] [0316 0434] [04 06] [03 07]

[0566 0684] [05 05] [07 08] [0463 0615]

[04 06] [02 03] [05 05] [03 04]

[03 07] [0385 0537] [06 07] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


3 A new algorithm to choose best alternative

in GDM with incomplete IVFPRs.

In this section, a new algorithm is presented for GDM with incomplete

IVFPRs by using min-consistency. An explanatory example is given to validate

the anticipated technique. For ease, the structure of the determination process

is also shown in Figure1. Suppose that there are  alternatives 1 2  

and  experts 1 2  . Let 

be the fuzzy preference relation for the

expert  shown as follows:



=
³




´
× =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] 

12   


1



21 [05 05]   


2

   

   



1 


2   [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (19)
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where 

 ∈ ([0 1]) is the preference value given by expert  for alternative

 over , 

 = [1 1] − 


 


 = [05 05] 1 ≤  ≤  1 ≤  ≤  and

1 ≤  ≤ . The proposed GDM technique is given as follows:

Step-i: Determine the sets 

 and 


 of pairs of alternatives for known and

unknown preference values respectively, shown as follows:



 = {( )| is known} (20)



 = {( )| is unknown} (21)

where 1 ≤  ≤  1 ≤  ≤  and 1 ≤  ≤ .

Step-ii: If  =  then skip Step-ii, otherwise construct the sets 
1
  

2
 and


3
 based on the sets 


 and 


  The constructed sets are used to estimate

the unknown preference values 

 for the alternative  over  by expert 

as follows:

 =

1
 + 

2
 + 

3


3
 (22)


1
 = {|( ) ∈ 


  ( ) ∈ 


 and ( ) ∈ 


} (23)


2
 = {|( ) ∈ 


  ( ) ∈ 


 and ( ) ∈ 


} (24)


3
 = {|( ) ∈ 


  ( ) ∈ 


 and ( ) ∈ 


} (25)


1
 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|1

|
X
∈1



min(

 


) if |1

 | 6= 0

[05 05] otherwise

(26)


2
 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|2

|
X
∈2



min([1 1]− 

 


) if |2

 | 6= 0

[05 05] otherwise

(27)


3
 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|3

|
X
∈3



min(

 [1 1]− 


) if |3

 | 6= 0

[05 05] otherwise

(28)
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where |1
 | |2

 | and |3
 | are the cardinalities of the sets 1

  
2
 and 

3


respectively.


0
 = 


 ∪ {( )} (29)


0
 = 


 − {( )} (30)

Step-iii: To satisfy min-consistency of the complete interval-valued fuzzy

preference relation 

=
³




´
× , the following scaling conditions are used:

(i) If 
−
 + 

+
  1 and 

+
 + 

−
  1, then



 =

"

−
 +

1− (− + 
+
 )

2
 

+
 +

1− (+ + 
−
 )

2

#
(31a)

and



 =

"

−
 +

1− (+ + 
−
 )

2
 

+
 +

1− (− + 
+
 )

2

#


(31b)

(ii) If 
−
 + 

+
  1 and 

+
 + 

−
  1, then



 =

"

−
 +

1− (− + 
+
 )

2
 

+
 −


+
 + 

−
 − 1
2

#
(32a)

and



 =

"

−
 −


+
 + 

−
 − 1
2

 
+
 +

1− (− + 
+
 )

2

#


(32b)

(iii) If 
−
 + 

+
  1 and 

+
 + 

−
  1, then



 =

"

−
 −


−
 + 

+
 − 1
2

 
+
 +

1− (+ + 
−
 )

2

#
(33a)

and



 =

"

−
 +

1− (+ + 
−
 )

2
 

+
 −


−
 + 

+
 − 1
2

#


(33b)
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(iv) If 
−
 + 

+
  1 and 

+
 + 

−
  1, then



 =

"

−
 −


−
 + 

+
 − 1
2

 
+
 −


+
 + 

−
 − 1
2

#
(34a)

and



 =

"

−
 −


+
 + 

−
 − 1
2

 
+
 −


−
 + 

+
 − 1
2

#
 (34b)

A min-consistent matrix
e



=
³e´× is obtained under these condi-

tions.

Step-iv: Determine the collective matrix 

against all experts, shown as

follows:



=
³


´
× =

1



³e1 + e2 + e3+ e´×  (35)

where 1 ≤  ≤  1 ≤  ≤ 

Step-v: Calculate the average degree  of alternative  over all other alter-

natives by using interval normalizing method:

 =

X
=1



X
=1

X
=1



  = 1 2 3   (36)

Step-vi: [21] Calculate the possibility degree  = ( ≥ ) by using

formula:

( ≥ ) = min

(
max

Ã
+ −−

+ −− ++ −−
 0

!
 1

)
(37)

and construct the complementry matrix = ()×, where  ≥ 0 + =
1  = 0   = 1 2 3  

Step-vii: [11] Calculate the ranking value  () of alternative  by using

formula:

 () =
2

2

X
=1

 (38)
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where 1 ≤  ≤  and
X
=1

 () = 1.

 

Incomplete IVFPRs 

 

Experts Set 

Estimating 
Procedure 

min- 
Consistency 

Aggregation 
Phase 

Possibility 
Degree 

Best Option(s) 
(Solution) 

Exploitation 
Phase 

Complete IVFPRs 

Consistent IVFPRs 

Collective IVFPR 

Complementary matrix  

Figure1. Resolution process for GDM by using incomplete IVFPRs.

Example 3.1. A firm produces solar water refiners. In its production process,

the company has to buy solar panels in different sizes and voltages from dif-

ferent suppliers. Presently, Japan Solar Company has four potential suppliers

in four different countries, namely, the Korea, China, Italy and Turkey, signi-

fied as ( = 1 2 3 4), respectively. A committee consisting of three experts

( = 1 2 3) from different departments has been formed to assess the four

suppliers ( = 1 2 3 4). Suppose that the experts ( = 1 2 3) provide

their assessments in form of following incomplete IVFPRs :
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1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] 112 [06 08] 114

121 [05 05] 123 [03 07]

[02 04] 132 [05 05] [06 09]

141 [03 07] [01 04] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦



2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] 12 [04 06] [03 07]

21 [05 05] [07 08] 24

[04 06] [02 03] [05 05] [03 04]

[03 07] 42 [06 07] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


and


3
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] 312 [07 08] 314

[04 06] [05 05] 323 [05 07]

[02 03] 332 [05 05] 334

341 [03 05] 343 [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


Step-i: For the fuzzy preference relation 
1
 the sets of pairs of alternatives

for known and unknown preference values are determined as follows:

1
 = {(1 1) (1 3) (2 2) (2 4) (3 1) (3 3) (3 4) (4 2) (4 3) (4 4)}

1
 = {(1 2) (1 4) (2 1) (2 3) (3 2) (4 1)}

Step-ii:

1112 =  1212 =  1312 = 

1112 = [05 05] 1212 = [05 05] 1312 = [05 05]

112 =
1

3
(1112 + 1212 + 1312)

= [05 05]

1
0

 = {(1 1) (1 2) (1 3) (2 2) (2 4) (3 1) (3 3) (3 4) (4 2) (4 3)
(4 4)}

1
0

 = 1
 − {(1 2)} = {(1 4) (2 1) (2 3) (3 2) (4 1)}
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1114 = {2 3} 1214 = {3} 1314 = {2 3}
1114 =

1

2
[min(

1
12 

1
24) + min(

1
13 

1
34)] =

1

2
[[03 05] + [06 08]]

= [045 065],

1214 = min([1 1]− 113 
1
34) = min([02 0 4] [06 09]) = [02 04]

1314 =
1

2
[min(

1
12 [1 1]− 142) + min(

1
13 [1 1]− 143)]

=
1

2
[min([05 05] [03 07]) + min([06 08] [06 09])]

=
1

2
[[03 05] + [06 08]] = [045 065]

114 =
1

3
(1114 + 1214 + 1314) = [03667 05667]

1
00

 = {(1 1) (1 2) (1 3) (1 4) (2 2) (2 4) (3 1) (3 3) (3 4) (4 2)
(4 3) (4 4)}

1
00

 = 1
0

 − {(1 4)} = {(2 1) (2 3) (3 2) (4 1)}

Hence, Continuing as above the fuzzy preference relation 
1
against expert 1

is obtained as follows:


1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] [05 05] [06 08] [03667 5667]

[04667 05222] [05 05] [02889 04574] [03 07]

[02 04] [03055 05389] [05 05] [06 09]

[02519 04673] [03 07] [01 04] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


Step-iii: min-consistency preference relation
e

1

based on 
1
is obtained as

follows:

e

1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] [04889 05166] [06 08] [04497 6574]

[04834 05111] [05 05] [0375 0576] [03 07]

[02 04] [0424 0625] [05 05] [06 09]

[03426 05503] [03 07] [01 04] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


Likewise, min-consistency preference relations
e

2

and
e

3

against the experts
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2 and 3 respectively, given as below:

e

2

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] [033 046] [04 06] [03 07]

[054 067] [05 05] [07 08] [046 061]

[04 06] [02 03] [05 05] [03 04]

[03 07] [039 054] [06 07] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

e

3

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] [04166 055] [07 08] [04722 0599]

[045 05834] [05 05] [05333 06592] [05 07]

[02 03] [03408 04667] [05 05] [0384 04994]

[0401 05278] [03 05] [05006 0616] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Step-iv: The collective matrix against all the experts is shown as follows:



=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[05 05] [04118 05089] [05667 07333] [04073 06521]

[04911 05882] [05 05] [05361 06784] [042 067]

[02667 04333] [03216 04639] [05 05] [0428 05998]

[03479 05927] [033 058] [04002 0572] [05 05]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step-v: The average degree   = 1 2 3 4 of each alternative is derived by

using interval normalizing method given as:

1 =

4X
=1

1

4X
=1

4X
=1



=
[18858 23943]

[69274 90726]
= [02078 03456];

2 =

4X
=1

2

X
=1

X
=1



=
[19472 24366]

[69274 90726]
= [02146 03517];

3 =

4X
=1

3

X
=1

X
=1



=
[15163 1997]

[69274 90726]
= [01671 02883];
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4 =

4X
=1

4

X
=1

X
=1



=
[15781 22447]

[69274 90726]
= [01739 03240]

Step-vi: By using eq. (37), complementry matrix  = ()4×4 is obtained

as follows:

 = ()4×4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

05 04765 06892 05964

05235 05 07147 0619

03108 02853 05 04217

04036 0381 05783 05

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step-vii: The ranking value () of alternative  1 ≤  ≤ 4 is obtained
as follows:

(1) =
2

42

4X
=1

1 = 02827625;

(2) =
2

42

4X
=1

2 = 029465;

(3) =
2

42

4X
=1

3 = 0189725;

(4) =
2

42

4X
=1

4 = 02328625;

where
4X

=1

() = 1. Thus, the final ranking of the alternatives is derived as

follows:

2  1  4  3

Therefore, 2 is the best alternative.

The Numerical examples show the way to apply proposed technique to

construct the complete IVFPR based on min-consistency. In general, the

proposed approach is quite easy for use in estimating unknown preference

values.
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Conclusion

In this paper extended minimum t-norm has been used successfully to

determine the missing values in incomplete IVFPR and further extends to

construct min-consistent matrix. Numerical studies show that the proposed

technique can handle all type of incomplete IVFPR. Consequently, another

algorithm is established to deal with GDM problems with incomplete IVFPRs.

This process involves two stages, the estimation of unknown interval-valued

preference values and the choice of the best alternative(s).
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