6,398 research outputs found

    Evolution and Analysis of Embodied Spiking Neural Networks Reveals Task-Specific Clusters of Effective Networks

    Full text link
    Elucidating principles that underlie computation in neural networks is currently a major research topic of interest in neuroscience. Transfer Entropy (TE) is increasingly used as a tool to bridge the gap between network structure, function, and behavior in fMRI studies. Computational models allow us to bridge the gap even further by directly associating individual neuron activity with behavior. However, most computational models that have analyzed embodied behaviors have employed non-spiking neurons. On the other hand, computational models that employ spiking neural networks tend to be restricted to disembodied tasks. We show for the first time the artificial evolution and TE-analysis of embodied spiking neural networks to perform a cognitively-interesting behavior. Specifically, we evolved an agent controlled by an Izhikevich neural network to perform a visual categorization task. The smallest networks capable of performing the task were found by repeating evolutionary runs with different network sizes. Informational analysis of the best solution revealed task-specific TE-network clusters, suggesting that within-task homogeneity and across-task heterogeneity were key to behavioral success. Moreover, analysis of the ensemble of solutions revealed that task-specificity of TE-network clusters correlated with fitness. This provides an empirically testable hypothesis that links network structure to behavior.Comment: Camera ready version of accepted for GECCO'1

    MAGIC observations of Mkn 421 in 2008, and related optical/X-ray/TeV MWL study

    Full text link
    The HBL-type blazar Markarian 421 is one of the brightest TeV gamma-ray sources of the Northern sky. From December 2007 until June 2008 it was intensively observed in the VHE (E>100 GeV) band by the MAGIC gamma-ray telescope. The source showed intense and prolonged activity during the whole period. In some nights the integral flux rose up to 3.6 Crab units (E>200 GeV). Intra-night rapid flux variations were observed. We compared the optical (KVA) and X-ray (RXTE-ASM, Swift-XRT) data with the MAGIC VHE data, investigating the correlations between different energy bands.Comment: 4 pages,4figures, Contribution to the 31st ICRC, Lodz, Poland, July 200

    Detection of Cherenkov light from air showers with Geiger-APDs

    Full text link
    We have detected Cherenkov light from air showers with Geiger-mode APDs (G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several advantages compared to conventional photomultiplier tubes in the field of ground-based gamma-ray astronomy. In a field test with the MAGIC telescope we have tested the efficiency of a G-APD / light catcher setup to detect Cherenkov light from air showers. We estimate a detection efficiency, which is 60% higher than the efficiency of a MAGIC camera pixel. Ambient temperature dark count rates of the tested G-APDs are below the rates of the night sky light background. According to these recent tests G-APDs promise a major progress in ground-based gamma-ray astronomy.Comment: 4 pages, 5 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Model-based prognostics for batteries which estimates useful life and uses a probability density function

    Get PDF
    This invention develops a mathematical model to describe battery behavior during individual discharge cycles as well as over its cycle life. The basis for the form of the model has been linked to the internal processes of the battery and validated using experimental data. Effects of temperature and load current have also been incorporated into the model. Subsequently, the model has been used in a Particle Filtering framework to make predictions of remaining useful life for individual discharge cycles as well as for cycle life. The prediction performance was found to be satisfactory as measured by performance metrics customized for prognostics for a sample case. The work presented here provides initial steps towards a comprehensive health management solution for energy storage devices

    Study of the performance and capability of the new ultra-fast 2 GSample/s FADC data acquisition system of the MAGIC telescope

    Full text link
    In February 2007 the MAGIC Air Cherenkov Telescope for gamma-ray astronomy was fully upgraded with an ultra fast 2 GSamples/s digitization system. Since the Cherenkov light flashes are very short, a fast readout can minimize the influence of the background from the light of the night sky. Also, the time structure of the event is an additional parameter to reduce the background from unwanted hadronic showers. An overview of the performance of the new system and its impact on the sensitivity of the MAGIC instrument will be presented.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Etude des variations de l'indice micronaire, de la maturité et de la finesse de la fibre de trois variétés de cotonnier dans les essais régionaux campagne 1984-1985 en Côte d'Ivoire

    Full text link
    Les variations de l'indice micronaire des cotons des trois variétés étudiées en fonction des localités sont expliquées de façon satisfaisante par les variations de la maturité des fibres. Elles sont totalement expliquées par les deux caractéristiques à savoir : finesse standard et maturit

    Prognostics for Electronics Components of Avionics Systems

    Get PDF
    Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure

    Universality of Regge and vibrational trajectories in a semiclassical model

    Full text link
    The orbital and radial excitations of light-light mesons are studied in the framework of the dominantly orbital state description. The equation of motion is characterized by a relativistic kinematics supplemented by the usual funnel potential with a mixed scalar and vector confinement. The influence of finite quark masses and potential parameters on Regge and vibrational trajectories is discussed. The case of heavy-light mesons is also presented.Comment: 12 page
    corecore