6,398 research outputs found
Evolution and Analysis of Embodied Spiking Neural Networks Reveals Task-Specific Clusters of Effective Networks
Elucidating principles that underlie computation in neural networks is
currently a major research topic of interest in neuroscience. Transfer Entropy
(TE) is increasingly used as a tool to bridge the gap between network
structure, function, and behavior in fMRI studies. Computational models allow
us to bridge the gap even further by directly associating individual neuron
activity with behavior. However, most computational models that have analyzed
embodied behaviors have employed non-spiking neurons. On the other hand,
computational models that employ spiking neural networks tend to be restricted
to disembodied tasks. We show for the first time the artificial evolution and
TE-analysis of embodied spiking neural networks to perform a
cognitively-interesting behavior. Specifically, we evolved an agent controlled
by an Izhikevich neural network to perform a visual categorization task. The
smallest networks capable of performing the task were found by repeating
evolutionary runs with different network sizes. Informational analysis of the
best solution revealed task-specific TE-network clusters, suggesting that
within-task homogeneity and across-task heterogeneity were key to behavioral
success. Moreover, analysis of the ensemble of solutions revealed that
task-specificity of TE-network clusters correlated with fitness. This provides
an empirically testable hypothesis that links network structure to behavior.Comment: Camera ready version of accepted for GECCO'1
MAGIC observations of Mkn 421 in 2008, and related optical/X-ray/TeV MWL study
The HBL-type blazar Markarian 421 is one of the brightest TeV gamma-ray
sources of the Northern sky. From December 2007 until June 2008 it was
intensively observed in the VHE (E>100 GeV) band by the MAGIC gamma-ray
telescope. The source showed intense and prolonged activity during the whole
period. In some nights the integral flux rose up to 3.6 Crab units (E>200 GeV).
Intra-night rapid flux variations were observed. We compared the optical (KVA)
and X-ray (RXTE-ASM, Swift-XRT) data with the MAGIC VHE data, investigating the
correlations between different energy bands.Comment: 4 pages,4figures, Contribution to the 31st ICRC, Lodz, Poland, July
200
Detection of Cherenkov light from air showers with Geiger-APDs
We have detected Cherenkov light from air showers with Geiger-mode APDs
(G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several
advantages compared to conventional photomultiplier tubes in the field of
ground-based gamma-ray astronomy. In a field test with the MAGIC telescope we
have tested the efficiency of a G-APD / light catcher setup to detect Cherenkov
light from air showers. We estimate a detection efficiency, which is 60% higher
than the efficiency of a MAGIC camera pixel. Ambient temperature dark count
rates of the tested G-APDs are below the rates of the night sky light
background. According to these recent tests G-APDs promise a major progress in
ground-based gamma-ray astronomy.Comment: 4 pages, 5 figures, to appear in the proceedings of the 30th
International Cosmic Ray Conference, Merida, July 200
Model-based prognostics for batteries which estimates useful life and uses a probability density function
This invention develops a mathematical model to describe battery behavior during individual discharge cycles as well as over its cycle life. The basis for the form of the model has been linked to the internal processes of the battery and validated using experimental data. Effects of temperature and load current have also been incorporated into the model. Subsequently, the model has been used in a Particle Filtering framework to make predictions of remaining useful life for individual discharge cycles as well as for cycle life. The prediction performance was found to be satisfactory as measured by performance metrics customized for prognostics for a sample case. The work presented here provides initial steps towards a comprehensive health management solution for energy storage devices
Study of the performance and capability of the new ultra-fast 2 GSample/s FADC data acquisition system of the MAGIC telescope
In February 2007 the MAGIC Air Cherenkov Telescope for gamma-ray astronomy
was fully upgraded with an ultra fast 2 GSamples/s digitization system. Since
the Cherenkov light flashes are very short, a fast readout can minimize the
influence of the background from the light of the night sky. Also, the time
structure of the event is an additional parameter to reduce the background from
unwanted hadronic showers. An overview of the performance of the new system and
its impact on the sensitivity of the MAGIC instrument will be presented.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of
the MAGIC Collaboratio
Etude des variations de l'indice micronaire, de la maturité et de la finesse de la fibre de trois variétés de cotonnier dans les essais régionaux campagne 1984-1985 en Côte d'Ivoire
Les variations de l'indice micronaire des cotons des trois variétés étudiées en fonction des localités sont expliquées de façon satisfaisante par les variations de la maturité des fibres. Elles sont totalement expliquées par les deux caractéristiques à savoir : finesse standard et maturit
Prognostics for Electronics Components of Avionics Systems
Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure
Universality of Regge and vibrational trajectories in a semiclassical model
The orbital and radial excitations of light-light mesons are studied in the
framework of the dominantly orbital state description. The equation of motion
is characterized by a relativistic kinematics supplemented by the usual funnel
potential with a mixed scalar and vector confinement. The influence of finite
quark masses and potential parameters on Regge and vibrational trajectories is
discussed. The case of heavy-light mesons is also presented.Comment: 12 page
- …
