Elucidating principles that underlie computation in neural networks is
currently a major research topic of interest in neuroscience. Transfer Entropy
(TE) is increasingly used as a tool to bridge the gap between network
structure, function, and behavior in fMRI studies. Computational models allow
us to bridge the gap even further by directly associating individual neuron
activity with behavior. However, most computational models that have analyzed
embodied behaviors have employed non-spiking neurons. On the other hand,
computational models that employ spiking neural networks tend to be restricted
to disembodied tasks. We show for the first time the artificial evolution and
TE-analysis of embodied spiking neural networks to perform a
cognitively-interesting behavior. Specifically, we evolved an agent controlled
by an Izhikevich neural network to perform a visual categorization task. The
smallest networks capable of performing the task were found by repeating
evolutionary runs with different network sizes. Informational analysis of the
best solution revealed task-specific TE-network clusters, suggesting that
within-task homogeneity and across-task heterogeneity were key to behavioral
success. Moreover, analysis of the ensemble of solutions revealed that
task-specificity of TE-network clusters correlated with fitness. This provides
an empirically testable hypothesis that links network structure to behavior.Comment: Camera ready version of accepted for GECCO'1