16 research outputs found
Equation of state for Universe from similarity symmetries
In this paper we proposed to use the group of analysis of symmetries of the
dynamical system to describe the evolution of the Universe. This methods is
used in searching for the unknown equation of state. It is shown that group of
symmetries enforce the form of the equation of state for noninteracting scaling
multifluids. We showed that symmetries give rise the equation of state in the
form and energy density
, which
is commonly used in cosmology. The FRW model filled with scaling fluid (called
homological) is confronted with the observations of distant type Ia supernovae.
We found the class of model parameters admissible by the statistical analysis
of SNIa data. We showed that the model with scaling fluid fits well to
supernovae data. We found that and (), which can correspond to (hyper) phantom fluid, and to a
high density universe. However if we assume prior that
then the favoured model is close to concordance
CDM model. Our results predict that in the considered model with
scaling fluids distant type Ia supernovae should be brighter than in
CDM model, while intermediate distant SNIa should be fainter than in
CDM model. We also investigate whether the model with scaling fluid is
actually preferred by data over CDM model. As a result we find from
the Akaike model selection criterion prefers the model with noninteracting
scaling fluid.Comment: accepted for publication versio
Anisotropy and inflation in Bianchi I brane worlds
After a more general assumption on the influence of the bulk on the brane, we
extend some conclusions by Maartens et al. and Santos et al. on the asymptotic
behavior of Bianchi I brane worlds. As a consequence of the nonlocal
anisotropic stresses induced by the bulk, in most of our models, the brane does
not isotropize and the nonlocal energy does not vanish in the limit in which
the mean radius goes to infinity. We have also found the intriguing possibility
that the inflation due to the cosmological constant might be prevented by the
interaction with the bulk. We show that the problem for the mean radius can be
completely solved in our models, which include as particular cases those in the
references above.Comment: 10 pages, improved discussion on the likeliness of
non-isotropization, completed list of references, matches version to appear
in Class. Quantum Gra
Constraints on alternative models to dark energy
The recent observations of type Ia supernovae strongly support that the
universe is accelerating now and decelerated in the recent past. This may be
the evidence of the breakdown of the standard Friemann equation. We consider a
general modified Friedmann equation. Three different models are analyzed in
detail. The current supernovae data and the Wilkinson microwave anisotropy
probe data are used to constrain these models. A detailed analysis of the
transition from the deceleration phase to the acceleration phase is also
performed.Comment: 10 pages, 1 figure, revtex
Fomin's conception of quantum cosmogenesis
The main aim of this paper is to extend the early approach to quantum
cosmogenesis provided by Fomin. His approach was developed independently to the
well-known Tryon description of the creation of the closed universe as a
process of quantum fluctuation of vacuum. We apply the Fomin concept to derive
the cosmological observables. We argue that Fomin's idea from his 1973 work, in
contrast to Tryon's one has impact on the current Universe models and the
proposed extension of his theory now can be tested by distant supernovae SNIa.
Fomin's idea of the creation of the Universe is based on the intersection of
two fundamental theories: general relativity and quantum field theory with the
contemporary cosmological models with dark energy. As a result of comparison
with contemporary approaches concerning dark energy, we found out that Fomin's
idea appears in the context of the present acceleration of the Universe
explanation: cosmological models with decaying vacuum. Contemporary it appears
in the form of Ricci scalar dark energy connected with the holographic
principle. We show also that the Fomin model admits the bounce instead of the
initial singularity. We demonstrate that the Fomin model of cosmogenesis can be
falsified and using SNIa data the values of model parameters is in agreement
with observations.Comment: 12 pages, 4 figures; (v2) 22 pages, references added, figures
improved; (v3) rewritten using revtex4; (v4) minor changes; (v5) improved
formulas and extended statistical analysi
AIC, BIC, Bayesian evidence against the interacting dark energy model
Recent astronomical observations have indicated that the Universe is in the
phase of accelerated expansion. While there are many cosmological models which
try to explain this phenomenon, we focus on the interacting CDM model
where the interaction between the dark energy and dark matter sectors takes
place. This model is compared to its simpler alternative---the CDM
model. To choose between these models the likelihood ratio test was applied as
well as the model comparison methods (employing Occam's principle): the Akaike
information criterion (AIC), the Bayesian information criterion (BIC) and the
Bayesian evidence. Using the current astronomical data: SNIa (Union2.1),
, BAO, Alcock--Paczynski test and CMB we evaluated both models. The
analyses based on the AIC indicated that there is less support for the
interacting CDM model when compared to the CDM model, while
those based on the BIC indicated that there is the strong evidence against it
in favor the CDM model. Given the weak or almost none support for the
interacting CDM model and bearing in mind Occam's razor we are
inclined to reject this model.Comment: LaTeX svjour3, 12 pages, 3 figure
Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes
We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia),
the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray
gas mass fraction in clusters and the observational data to constrain
models of the accelerating universe. Combining the 192 ESSENCE data with the
observational data to constrain a parameterized deceleration parameter,
we obtain the best fit values of transition redshift and current deceleration
parameter , .
Furthermore, using CDM model and two model-independent equation of
state of dark energy, we find that the combined constraint from the 192 ESSENCE
data and other four cosmological observations gives smaller values of
and , but a larger value of than the combined
constraint from the 182 Gold data with other four observations. Finally,
according to the Akaike information criterion it is shown that the recently
observed data equally supports three dark energy models: CDM,
and .Comment: 18 pages, 8 figure
Dark energy problem: from phantom theory to modified Gauss-Bonnet gravity
The solution of dark energy problem in the models without scalars is
presented. It is shown that late-time accelerating cosmology may be generated
by the ideal fluid with some implicit equation of state. The universe evolution
within modified Gauss-Bonnet gravity is considered. It is demonstrated that
such gravitational approach may predict the (quintessential, cosmological
constant or transient phantom) acceleration of the late-time universe with
natural transiton from deceleration to acceleration (or from non-phantom to
phantom era in the last case).Comment: LaTeX 8 pages, prepared for the Proceedings of QFEXT'05, minor
correctons, references adde