5,637 research outputs found
Quartz crystal microbalance use in biological studies
Design, development, and applications of quartz crystal microbalance are discussed. Two types of crystals are used. One serves as reference and other senses changes in mass. Specific application to study of bacterial spores is described
Properties of the Strange Axial Mesons in the Relativized Quark Model
We studied properties of the strange axial mesons in the relativized quark
model. We calculated the decay constant in the quark model and showed how
it can be used to extract the mixing angle
() from the weak decay . The ratio is the most sensitive
measurement and also the most reliable since the largest of the theoretical
uncertainties factor out. However the current bounds extracted from the
TPC/Two-Gamma collaboration measurements are rather weak: we typically obtain
at 68\% C.L. We also calculated the
strong OZI-allowed decays in the pseudoscalar emission model and the flux-tube
breaking model and extracted a mixing angle of . Our analysis also indicates that the heavy quark limit does not give a
good description of the strange mesons.Comment: Revised version to be published in Phys. Rev. D. Minor changes. Latex
file uses revtex version 3 and epsfig, 4 postcript figures are attached. The
full postcript version with embedded figures is available at
ftp://ftp.physics.carleton.ca/pub/theory/godfrey/ocipc9512.ps.
Prospects for detection of via
At least one state in the first family of D-wave quarkonium levels
has been discovered near the predicted mass of 10.16 GeV/. This state is
probably the one with J=2. This state and the ones with J=1 and J=3 may
contribute a detectable amount to the decay , depending on the partial widths for these decays for which predictions
vary considerably. The prospects for detection of the chain are discussed.Comment: 4 pages, LaTeX, 1 figure, to be published in Phys. Rev. D, comment
added after Eq. (2
Report of the Subgroup on Alternative Models and New Ideas
We summarize some of the work done by the P3 subgroup on Alternative Models
and New Ideas. The working group covered a broad range of topics including a
constrained Standard Model from an extra dimension, a discussion of recent
ideas addressing the strong CP problem, searches for doubly charged higgs
bosons in e gamma collisions, and an update on discovery limits for extra
neutral gauge bosons at hadron colliders. The breadth of topics reflects the
many ideas and approaches to physics beyond the Standard Model.Comment: 10 pages, 5 figures. Contributed to the APS/DPF/DPB Summer Study on
the Future of Particle Physics (Snowmass 2001), Snowmass, Colorado, 30 Jun -
21 Jul 200
Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development
Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001) and at age 4 years (r = 0.16, P = 0.02). In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02). This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04). We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fa
Dystroglycan Overexpression in Vivo Alters Acetylcholine Receptor Aggregation at the Neuromuscular Junction
AbstractDystroglycan is a member of the transmembrane dystrophin glycoprotein complex in muscle that binds to the synapse-organizing molecule agrin. Dystroglycan binding and AChR aggregation are mediated by two separate domains of agrin. To test whether dystroglycan plays a role in receptor aggregation at the neuromuscular junction, we overexpressed it by injecting rabbit dystroglycan RNA into one- or two-celled Xenopus embryos. We measured AChR aggregation in myotomes by labeling them with rhodamine–α-bungarotoxin followed by confocal microscopy and image analysis. Dystroglycan overexpression decreased AChR aggregation at the neuromuscular junction. This result is consistent with dystroglycan competition for agrin without signaling AChR aggregation. It also supports the hypothesis that dystroglycan is not the myotube-associated specificity component, (MASC) a putative coreceptor needed for agrin to activate muscle-specific kinase (MuSK) and signal AChR aggregation. Dystroglycan was distributed along the surface of muscle membranes, but was concentrated at the ends of myotomes, where AChRs normally aggregate at synapses. Overexpressed dystroglycan altered AChR aggregation in a rostral–caudal gradient, consistent with the sequential development of neuromuscular synapses along the embryo. Increasing concentrations of dystroglycan RNA did not further decrease AChR aggregation, but decreased embryo survival. Development often stopped during gastrulation, suggesting an essential, nonsynaptic role of dystroglycan during this early period of development
Energy bands, conductance and thermoelectric power for ballistic electrons in a nanowire with spin-orbit interaction
We calculated the effects of spin-orbit interaction (SOI) on the energy
bands, ballistic conductance and the electron-diffusion thermoelectric power of
a nanowire by varying the temperature, electron density and width of the wire.
The potential barriers at the edges of the wire are assumed to be very high. A
consequence of the boundary conditions used in this model is determined by the
energy band structure, resulting in wider plateaus when the electron density is
increased due to larger energy-level separation as the higher subbands are
occupied by electrons. The nonlinear dependence of the transverse confinement
on position with respect to the well center excludes the "pole-like feature" in
the conductance which is obtained when a harmonic potential is employed for
confinement. At low temperature, the electron diffusion thermoelectric power
increases linearly with T but deviates from the linear behavior for large
values of T.Comment: Updated corrected version of the original submissio
Fine structure splittings of excited P and D states in charmonium
It is shown that the fine structure splittings of the and
excited states in charmonium are as large as those of the state if the
same is used. The predicted mass
GeV appears to be 120 MeV lower that the center of gravity of the
multiplet and lies below the threshold. Our value of
is approximately 80 MeV lower than that from the paper by Godfrey and Isgur
while the differences in the other masses are \la 20 MeV. Relativistic
kinematics plays an important role in our analysis.Comment: 12 page
Requirements specifications and recovered architectures as grounded theories
This paper describes the classic grounded theory (GT) process as a method to discover GTs to be
subjected to later empirical validation. The paper shows that a well conducted instance of
requirements engineering or of architecture recovery resembles an instance of the GT process for
the purpose of discovering the requirements specification or recovered architecture artifact that the
requirements engineering or architecture recovery produces. Therefore, this artifact resembles a
GT
- …