4,767 research outputs found

    LOFAR observations of 4C+19.44. On the discovery of low frequency spectral curvature in relativistic jet knots

    Get PDF
    We present the first LOFAR observations of the radio jet in the quasar 4C+19.44 (a.k.a. PKS 1354+19) obtained with the long baselines. The achieved resolution is very well matched to that of archival Jansky Very Large Array (JVLA) observations at higher radio frequencies as well as the archival X-ray images obtained with {\it Chandra}. We found that, for several knots along the jet, the radio flux densities measured at hundreds of MHz lie well below the values estimated by extrapolating the GHz spectra. This clearly indicates the presence of spectral curvature. Radio spectral curvature has been already observed in different source classes and/or extended radio structures and it has been often interpreted as due to intrinsic processes, as a curved particle energy distribution, rather than absorption mechanisms ({ Razin-Tsytovich} effect, free-free or synchrotron self absorption to name a few). Here we discuss our results according to the scenario where particles undergo stochastic acceleration mechanisms also in quasar jet knots.Comment: 13 pages, 4 tables, 4 figures, pre-proof version, published on the Astrophysical Journal (Harris, et al. 2019 ApJ, 873, 21

    Fine structure splittings of excited P and D states in charmonium

    Get PDF
    It is shown that the fine structure splittings of the 23PJ2 ^3P_J and 33PJ3 ^3P_J excited states in charmonium are as large as those of the 13PJ1^3P_J state if the same αs(ÎŒ)≈0.36\alpha_s(\mu)\approx 0.36 is used. The predicted mass M(23P0)=3.84M(2 ^3P_0)=3.84 GeV appears to be 120 MeV lower that the center of gravity of the 23PJ2 ^3P_J multiplet and lies below the DDˉ∗D\bar D^* threshold. Our value of M(23P0)M(2 ^3P_0) is approximately 80 MeV lower than that from the paper by Godfrey and Isgur while the differences in the other masses are \la 20 MeV. Relativistic kinematics plays an important role in our analysis.Comment: 12 page

    Historical Criminology and the Explanatory Power of the Past

    Get PDF
    To what extent can the past ‘explain’ the present? This deceptively simple question lies at the heart of historical criminology (research which incorporates historical primary sources while addressing present-day debates and practices in the criminal justice field). This article seeks first to categorise the ways in which criminologists have used historical data thus far, arguing that it is most commonly deployed to ‘problematize’ the contemporary rather than to ‘explain’ it. The article then interrogates the reticence of criminologists to attribute explicative power in relation to the present to historical data. Finally, it proposes the adoption of long time-frame historical research methods, outlining three advantages which would accrue from this: the identification and analysis of historical continuities; a more nuanced, shared understanding of micro/macro change over time in relation to criminal justice; and a method for identifying and analysing instances of historical recurrence, particularly in perceptions and discourses around crime and justice

    Coulomb plus power-law potentials in quantum mechanics

    Full text link
    We study the discrete spectrum of the Hamiltonian H = -Delta + V(r) for the Coulomb plus power-law potential V(r)=-1/r+ beta sgn(q)r^q, where beta > 0, q > -2 and q \ne 0. We show by envelope theory that the discrete eigenvalues E_{n\ell} of H may be approximated by the semiclassical expression E_{n\ell}(q) \approx min_{r>0}\{1/r^2-1/(mu r)+ sgn(q) beta(nu r)^q}. Values of mu and nu are prescribed which yield upper and lower bounds. Accurate upper bounds are also obtained by use of a trial function of the form, psi(r)= r^{\ell+1}e^{-(xr)^{q}}. We give detailed results for V(r) = -1/r + beta r^q, q = 0.5, 1, 2 for n=1, \ell=0,1,2, along with comparison eigenvalues found by direct numerical methods.Comment: 11 pages, 3 figure

    A unified meson-baryon potential

    Full text link
    We study the spectra of mesons and baryons, composed of light quarks, in the framework of a semirelativistic potential model including instanton induced forces. We show how a simple modification of the instanton interaction in the baryon sector allows a good description of the meson and the baryon spectra using an interaction characterized by a unique set of parameters.Comment: 7 figure

    Masses and Internal Structure of Mesons in the String Quark Model

    Get PDF
    The relativistic quantum string quark model, proposed earlier, is applied to all mesons, from pion to ΄\Upsilon, lying on the leading Regge trajectories (i.e., to the lowest radial excitations in terms of the potential quark models). The model describes the meson mass spectrum, and comparison with measured meson masses allows one to determine the parameters of the model: current quark masses, universal string tension, and phenomenological constants describing nonstring short-range interaction. The meson Regge trajectories are in general nonlinear; practically linear are only trajectories for light-quark mesons with non-zero lowest spins. The model predicts masses of many new higher-spin mesons. A new K∗(1−)K^*(1^-) meson is predicted with mass 1910 Mev. In some cases the masses of new low-spin mesons are predicted by extrapolation of the phenomenological short-range parameters in the quark masses. In this way the model predicts the mass of ηb(1S)(0−+)\eta_b(1S)(0^{-+}) to be 9500±309500\pm 30 MeV, and the mass of Bc(0−)B_c(0^-) to be 6400±306400\pm 30 MeV (the potential model predictions are 100 Mev lower). The relativistic wave functions of the composite mesons allow one to calculate the energy and spin structure of mesons. The average quark-spin projections in polarized ρ\rho-meson are twice as small as the nonrelativistic quark model predictions. The spin structure of K∗K^* reveals an 80% violation of the flavour SU(3). These results may be relevant to understanding the ``spin crises'' for nucleons.Comment: 30 pages, REVTEX, 6 table

    Exploitation of the Escherichia coli lac operon promoter for controlled recombinant protein production

    Get PDF
    The Escherichia coli lac operon promoter is widely used as a tool to control recombinant protein production in bacteria. Here we give a brief review of how it functions, how it is regulated, and how, based on this knowledge, a suite of lac promoter derivatives has been developed to give controlled expression that is suitable for diverse biotechnology applications

    Quantum-Chromodynamic Potential Model for Light-Heavy Quarkonia and the Heavy Quark Effective Theory

    Get PDF
    We have investigated the spectra of light-heavy quarkonia with the use of a quantum-chromodynamic potential model which is similar to that used earlier for the heavy quarkonia. An essential feature of our treatment is the inclusion of the one-loop radiative corrections to the quark-antiquark potential, which contribute significantly to the spin-splittings among the quarkonium energy levels. Unlike ccˉc\bar{c} and bbˉb\bar{b}, the potential for a light-heavy system has a complicated dependence on the light and heavy quark masses mm and MM, and it contains a spin-orbit mixing term. We have obtained excellent results for the observed energy levels of D0D^0, DsD_s, B0B^0, and BsB_s, and we are able to provide predicted results for many unobserved energy levels. Our potential parameters for different quarkonia satisfy the constraints of quantum chromodynamics. We have also used our investigation to test the accuracy of the heavy quark effective theory. We find that the heavy quark expansion yields generally good results for the B0B^0 and BsB_s energy levels provided that M−1M^{-1} and M−1ln⁡MM^{-1}\ln M corrections are taken into account in the quark-antiquark interactions. It does not, however, provide equally good results for the energy levels of D0D^0 and DsD_s, which indicates that the effective theory can be applied more accurately to the bb quark than the cc quark.Comment: 17 pages of LaTeX. To appear in Physical Review D. Complete PostScript file is available via WWW at http://gluon.physics.wayne.edu/wsuhep/jim/heavy.p
    • 

    corecore