272 research outputs found

    Gene therapy with Angiotensin-(1-9) preserves left ventricular systolic function after myocardial infarction

    Get PDF
    BACKGROUND: Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin angiotensin system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic minipump in mice. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). OBJECTIVES: To evaluate effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post infarction. METHODS: C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular (LV) pressure-volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation–contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff perfused whole heart model. RESULTS: Gene delivery of Ang-(1-9) significantly reduced sudden cardiac death post-MI. Pressure–volume measurements revealed complete restoration of end systolic pressure, ejection fraction, end systolic volume and the end diastolic pressure–volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and increasing contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A-dependent mechanism. CONCLUSIONS: Our novel findings show that Ang-(1-9) gene therapy preserves LV systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) has a direct effect on cardiomyocyte 3 calcium handling through a protein kinase A-dependent mechanism. These data highlight Ang-(1-9) gene therapy as a potential new strategy in the context of MI

    Decisional Informatics for Psychosocial Rehabilitation: A Feasibility Pilot on Tailored and Fluid Treatment Algorithms for Serious Mental Illness

    Get PDF
    This study introduces a computerized clinical decision-support tool, the Fluid Outpatient Rehabilitation Treatment (FORT), that incorporates individual and ever-evolving patient needs to guide clinicians in developing and updating treatment decisions in real-time. In this proof-of-concept feasibility pilot, FORT was compared against traditional treatment planning using similar behavioral therapies in 52 adults with severe mental illness attending community-based day treatment. At posttreatment and follow-up, group differences and moderate-to-large effect sizes favoring FORT were detected in social function, work readiness, self-esteem, working memory, processing speed, and mental flexibility. Of participants who identified obtaining a General Education Diploma as their goal, 73% in FORT passed the examination compared with 18% in traditional treatment planning. FORT was also associated with higher agency cost-effectiveness and a better average benefit-cost ratio, even when considering diagnosis, baseline symptoms, and education. Although the comparison groups were not completely equivalent, the findings suggest computerized decision support systems that collaborate with human decision-makers to personalize psychiatric rehabilitation and address critical decisions may have a role in improving treatment effectiveness and efficiency

    Pharmacokinetics, safety and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial

    Get PDF
    Background: The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib potentiated radiation and temozolomide chemotherapy in pre-clinical glioblastoma models but brain penetration was poor. Clinically, PARP inhibitors exacerbate the hematological side-effects of temozolomide. The OPARATIC trial was conducted to measure penetration of recurrent glioblastoma by olaparib, and assess the safety and tolerability of its combination with temozolomide. Methods: Pre-clinical pharmacokinetic studies evaluated olaparib tissue distribution in rats and tumor-bearing mice. Adult patients with recurrent glioblastoma received various doses and schedules of olaparib and low-dose temozolomide in a 3+3 design. Suitable patients received olaparib prior to neurosurgical resection; olaparib concentrations in plasma, tumour core and tumour margin specimens were measured by mass spectrometry. A dose expansion cohort tested tolerability and efficacy of the recommended phase II dose (RP2D). Radiosensitizing effects of olaparib were measured by clonogenic survival in glioblastoma cell lines. Results: Olaparib was a substrate for multi-drug resistance protein-1 and showed no brain penetration in rats but was detected in orthotopic glioblastoma xenografts. Clinically, olaparib was detected in 71/71 tumor core specimens (27 patients, median 496nM) and 21/21 tumor margin specimens (9 patients, median 512.3nM). Olaparib exacerbated TMZ-related hematological toxicity, necessitating intermittent dosing. RP2D was olaparib 150mg (3 days/week) with TMZ 75mg/m2 daily for 42 days. Fourteen (36%) of 39 evaluable patients were progression-free at 6 months. Olaparib radiosensitized six glioblastoma cell lines at clinically relevant concentrations of 100 and 500 nM. Conclusions: Olaparib reliably penetrates recurrent glioblastoma at radiosensitizing concentrations, supporting further clinical development and highlighting the need for better pre-clinical models

    Longitudinal cytokine profiling identifies GRO-α and EGF as potential biomarkers of disease progression in Essential Thrombocythemia

    Get PDF
    Myeloproliferative neoplasms (MPNs) are characterized by deregulation of mature blood cell production and increased risk of myelofibrosis (MF) and leukemic transformation. Numerous driver mutations have been identified but substantial disease heterogeneity remains unexplained, implying the involvement of additional as yet unidentified factors. The inflammatory microenvironment has recently attracted attention as a crucial factor in MPN biology, in particular whether inflammatory cytokines and chemokines contribute to disease establishment or progression. Here we present a large-scale study of serum cytokine profiles in more than 400 MPN patients and identify an essential thrombocythemia (ET)-specific inflammatory cytokine signature consisting of Eotaxin, GRO-α, and EGF. Levels of 2 of these markers (GRO-α and EGF) in ET patients were associated with disease transformation in initial sample collection (GRO-α) or longitudinal sampling (EGF). In ET patients with extensive genomic profiling data (n = 183) cytokine levels added significant prognostic value for predicting transformation from ET to MF. Furthermore, CD56+CD14+ pro-inflammatory monocytes were identified as a novel source of increased GRO-α levels. These data implicate the immune cell microenvironment as a significant player in ET disease evolution and illustrate the utility of cytokines as potential biomarkers for reaching beyond genomic classification for disease stratification and monitoring.The serum cytokine studies were supported by a research grant from the Rosetrees Trust. NFØ was supported by grants from the Danish Lundbeck Foundation and Danish Cancer Society, J.G. was supported by fellowships from Bloodwise and the Kay Kendall Leukaemia Fund; and M.S.S. is the recipient of a Biotechnology and Biological Sciences Research Council Industrial Collaborative Awards in Science and Engineering PhD Studentship. Work in the R.C.S. laboratory was supported by grants from the Stiftung Blutspendezentrum SRK beider Basel, the Swiss National Science Foundation (31003A-147016/1 and 31003A_166613), and the Swiss Cancer League (KLS-2950-02-2012 and KFS-3655-02-2015). A.K. was supported by the Else Kröner-Fresenius Foundation. Work in the A.R.G. laboratory is supported by the Wellcome Trust, Bloodwise, Cancer Research UK, the Kay Kendall Leukaemia Fund, and the Leukemia and Lymphoma Society of America. Work in the D.G.K. laboratory is supported by a Bloodwise Bennett Fellowship (15008), a European Hematology Association Non-Clinical Advanced Research Fellowship, and an ERC Starting Grant (ERC-2016-STG–715371). D.G.K. and A.R.G. are supported by a core support grant from the Wellcome Trust and Medical Research Council to the Wellcome MRC Cambridge Stem Cell Institute, the National Institute for Health Research Cambridge Biomedical Research Centre, and the CRUK Cambridge Cancer Centre

    Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia.

    Get PDF
    Myeloproliferative neoplasms (MPNs) are characterized by deregulation of mature blood cell production and increased risk of myelofibrosis (MF) and leukemic transformation. Numerous driver mutations have been identified but substantial disease heterogeneity remains unexplained, implying the involvement of additional as yet unidentified factors. The inflammatory microenvironment has recently attracted attention as a crucial factor in MPN biology, in particular whether inflammatory cytokines and chemokines contribute to disease establishment or progression. Here we present a large-scale study of serum cytokine profiles in more than 400 MPN patients and identify an essential thrombocythemia (ET)-specific inflammatory cytokine signature consisting of Eotaxin, GRO-α, and EGF. Levels of 2 of these markers (GRO-α and EGF) in ET patients were associated with disease transformation in initial sample collection (GRO-α) or longitudinal sampling (EGF). In ET patients with extensive genomic profiling data (n = 183) cytokine levels added significant prognostic value for predicting transformation from ET to MF. Furthermore, CD56+CD14+ pro-inflammatory monocytes were identified as a novel source of increased GRO-α levels. These data implicate the immune cell microenvironment as a significant player in ET disease evolution and illustrate the utility of cytokines as potential biomarkers for reaching beyond genomic classification for disease stratification and monitoring.The serum cytokine studies were supported by a research grant from the Rosetrees Trust. NFØ was supported by grants from the Danish Lundbeck Foundation and Danish Cancer Society, J.G. was supported by fellowships from Bloodwise and the Kay Kendall Leukaemia Fund; and M.S.S. is the recipient of a Biotechnology and Biological Sciences Research Council Industrial Collaborative Awards in Science and Engineering PhD Studentship. Work in the R.C.S. laboratory was supported by grants from the Stiftung Blutspendezentrum SRK beider Basel, the Swiss National Science Foundation (31003A-147016/1 and 31003A_166613), and the Swiss Cancer League (KLS-2950-02-2012 and KFS-3655-02-2015). A.K. was supported by the Else Kröner-Fresenius Foundation. Work in the A.R.G. laboratory is supported by the Wellcome Trust, Bloodwise, Cancer Research UK, the Kay Kendall Leukaemia Fund, and the Leukemia and Lymphoma Society of America. Work in the D.G.K. laboratory is supported by a Bloodwise Bennett Fellowship (15008), a European Hematology Association Non-Clinical Advanced Research Fellowship, and an ERC Starting Grant (ERC-2016-STG–715371). D.G.K. and A.R.G. are supported by a core support grant from the Wellcome Trust and Medical Research Council to the Wellcome MRC Cambridge Stem Cell Institute, the National Institute for Health Research Cambridge Biomedical Research Centre, and the CRUK Cambridge Cancer Centre

    Strategic Planning for Local Tourism Destinations: An Analysis of Tourism

    Get PDF
    This paper reports on a study of the planning practices of local tourism destinations. The tourism plans of 30 local tourism destinations in Queensland, Australia were analyzed to determine the extent to which sustainability principles, namely strategic planning and stakeholder participation, were integrated into the planning process. Utilizing a tourism planning process evaluation instrument developed by Simpson (2001), it was found that local tourism destinations are not integrating sustainability principles in their planning processes

    CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response.

    Get PDF
    Inhibition of the chemokine receptor CXCR4 in combination with blockade of the PD-1/PD-L1 T cell checkpoint induces T cell infiltration and anticancer responses in murine and human pancreatic cancer. Here we elucidate the mechanism by which CXCR4 inhibition affects the tumor immune microenvironment. In human immune cell-based chemotaxis assays, we find that CXCL12-stimulated CXCR4 inhibits the directed migration mediated by CXCR1, CXCR3, CXCR5, CXCR6, and CCR2, respectively, chemokine receptors expressed by all of the immune cell types that participate in an integrated immune response. Inhibiting CXCR4 in an experimental cancer medicine study by 1-wk continuous infusion of the small-molecule inhibitor AMD3100 (plerixafor) induces an integrated immune response that is detected by transcriptional analysis of paired biopsies of metastases from patients with microsatellite stable colorectal and pancreatic cancer. This integrated immune response occurs in three other examples of immune-mediated damage to noninfected tissues: Rejecting renal allografts, melanomas clinically responding to anti-PD1 antibody therapy, and microsatellite instable colorectal cancers. Thus, signaling by CXCR4 causes immune suppression in human pancreatic ductal adenocarcinoma and colorectal cancer by impairing the function of the chemokine receptors that mediate the intratumoral accumulation of immune cells.Stand Up 2 Cancer, Lustgarten Foundation, NIH
    • …
    corecore