437 research outputs found

    Large Possible retardation effects of quark confinement on the meson spectrum II

    Full text link
    We present the results of a study of heavy-light-quark bound states in the context of the reduced Bethe-Salpeter equation with relativistic vector and scalar interactions. We find that satisfactory fits may also be obtained when the retarded effect of the quark-antiquark interaction is concerned.Comment: 11 pages, RevTex, to appear in PR

    Genome variation and population structure among 1142 mosquitoes of the African malaria vector species Anopheles gambiae and Anopheles coluzzii

    Get PDF
    Mosquito control remains a central pillar of efforts to reduce malaria burden in sub-Saharan Africa. However, insecticide resistance is entrenched in malaria vector populations, and countries with a high malaria burden face a daunting challenge to sustain malaria control with a limited set of surveillance and intervention tools. Here we report on the second phase of a project to build an open resource of high-quality data on genome variation among natural populations of the major African malaria vector species Anopheles gambiae and Anopheles coluzzii. We analyzed whole genomes of 1142 individual mosquitoes sampled from the wild in 13 African countries, as well as a further 234 individuals comprising parents and progeny of 11 laboratory crosses. The data resource includes high-confidence single-nucleotide polymorphism (SNP) calls at 57 million variable sites, genome-wide copy number variation (CNV) calls, and haplotypes phased at biallelic SNPs. We use these data to analyze genetic population structure and characterize genetic diversity within and between populations. We illustrate the utility of these data by investigating species differences in isolation by distance, genetic variation within proposed gene drive target sequences, and patterns of resistance to pyrethroid insecticides. This data resource provides a foundation for developing new operational systems for molecular surveillance and for accelerating research and development of new vector control tools. It also provides a unique resource for the study of population genomics and evolutionary biology in eukaryotic species with high levels of genetic diversity under strong anthropogenic evolutionary pressures

    What is a sustainable healthy diet? A discussion paper

    Get PDF
    The food system today is destroying the environment upon which future food production depends. While the food system generates enough food energy for our population of over 7 billion it does not deliver adequate and affordable nutrition for all. About half the global population is inadequately or inappropriately nourished. Without action, these problems are set to become acute. As our global population grows, urbanises and becomes wealthier, it is demanding more resource intensive, energy rich foods. What, and how much we eat directly affects what, and how much is produced. We therefore need to consume more „sustainable diets‟ – diets that have lower environmental impacts, and are healthier. But what does such a diet look like? Can health, environmental sustainability, and all the other goals we have for our food system really be reconciled, or will there be trade offs

    The potential for land sparing to offset greenhouse gas emissions from agriculture

    Get PDF
    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing-increasing agricultural yields, reducing farm land area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the United Kingdom as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential, however economic and implementation considerations might limit the degree to which this technical potential could be realised in practice.This research was funded by the Cambridge Conservation Initiative Collaborative Fund for Conservation and we thank its major sponsor Arcadia. We thank J. Bruinsma for the provision of demand data, the CEH for the provision of soil data and J. Spencer for invaluable discussions. A.L. was supported by a Gates Cambridge Scholarship.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nclimate291

    A restatement of the natural science evidence base relevant to the control of bovine tuberculosis in Great Britain

    Get PDF
    This is the final version of the article. Available from the Royal Society via the DOI in this record.Bovine tuberculosis (bTB) is a very important disease of cattle in Great Britain, where it has been increasing in incidence and geographical distribution. In addition to cattle, it infects other species of domestic and wild animals, in particular the European badger (Meles meles). Policy to control bTB is vigorously debated and contentious because of its implications for the livestock industry and because some policy options involve culling badgers, the most important wildlife reservoir. This paper describes a project to provide a succinct summary of the natural science evidence base relevant to the control of bTB, couched in terms that are as policy-neutral as possible. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.The project was funded by the Oxford Martin School (part of the University of Oxford), and though many groups were consulted, the project was conducted completely independently of any stakeholder

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Genetic diversity of the African malaria vector Anopheles gambiae

    Get PDF
    The sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in Anopheles mosquitoes, which transmit the disease1. To gain a deeper understanding of how mosquito populations are evolving, here we sequenced the genomes of 765 specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa, and identified over 50 million single nucleotide polymorphisms within the accessible genome. These data revealed complex population structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and local variation in effective population size. Strong signals of recent selection were observed in insecticide-resistance genes, with several sweeps spreading over large geographical distances and between species. The design of new tools for mosquito control using gene-drive systems will need to take account of high levels of genetic diversity in natural mosquito populations

    The role of community and population ecology in applying mycorrhizal fungi for improved food security.

    Get PDF
    The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner

    Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato.

    Get PDF
    Dissection of the genetic architecture of adaptation and abiotic stress-related traits is highly desirable for developing drought-tolerant potatoes and enhancing the resilience of existing cultivars, particularly as agricultural production in rain-fed areas may be reduced by up to 50 % by 2020. The “DMDD” potato progeny was developed at International Potato Center (CIP) by crossing the sequenced double monoploid line DM and a diploid cultivar of the Solanum tuberosum diploid Andigenum Goniocalyx group. Recently, a high-density integrated genetic map based on single nucleotide polymorphism (SNP), diversity array technology (DArT), simple sequence repeats (SSRs), and amplified fragment length polymorphism (AFLP) markers was also made available for this population. Two trials were conducted, in greenhouse and field, for drought tolerance with two treatments each, well-watered and terminal drought, in which watering was suspended 60 days after planting. The DMDD population was evaluated for agro-morphological and physiological traits before and after initiation of stress, at multiple time points. Two dense parental genetic maps were constructed using published genotypic data, and quantitative trait locus (QTL) analysis identified 45 genomic regions associated with nine traits in well-watered and terminal drought treatments and 26 potentially associated with drought stress. In this study, the strong influence of environmental factors besides water shortage on the expression of traits and QTLs reflects the multigenic control of traits related to drought tolerance. This is the first study to our knowledge in potato identifying QTLs for drought-related traits in field and greenhouse trials, giving new insights into genetic architecture of drought-related traits. Many of the QTLs identified have the potential to be used in potato breeding programs for enhanced drought tolerance
    corecore