3 research outputs found

    Molecular Mechanisms of Premature Aging in Hemodialysis: The Complex Interplay between Innate and Adaptive Immune Dysfunction

    No full text
    Hemodialysis (HD) patient are known to be susceptible to a wide range of early and long-term complication such as chronic inflammation, infections, malnutrition, and cardiovascular disease that significantly affect the incidence of mortality. A large gap between the number of people with end-stage kidney disease (ESKD) and patients who received kidney transplantation has been identified. Therefore, there is a huge need to explore the underlying pathophysiology of HD complications in order to provide treatment guidelines. The immunological dysregulation, involving both the innate and adaptive response, plays a crucial role during the HD sessions and in chronic, maintenance treatments. Innate immune system mediators include the dysfunction of neutrophils, monocytes, and natural killer (NK) cells with signaling mediated by NOD-like receptor P3 (NLRP3) and Toll-like receptor 4 (TLR4); in addition, there is a significant activation of the complement system that is mediated by dialysis membrane-surfaces. These effectors induce a persistent, systemic, pro-inflammatory, and pro-coagulant milieu that has been described as inflammaging. The adaptive response, the imbalance in the CD4+/CD8+ T cell ratio, and the reduction of Th2 and regulatory T cells, together with an altered interaction with B lymphocyte by CD40/CD40L, have been mainly implicated in immune system dysfunction. Altogether, these observations suggest that intervention targeting the immune system in HD patients could improve morbidity and mortality. The purpose of this review is to expand our understanding on the role of immune dysfunction in both innate and adaptive response in patients undergoing hemodialysis treatment

    LPS REMOVAL REDUCES CD80-MEDIATED ALBUMINURIA IN CRITICALLY ILL PATIENTS WITH GRAM-NEGATIVE SEPSIS

    No full text
    LPS-induced sepsis is a leading cause of acute kidney injury (AKI) in critically ill patients. LPS may induce CD80 expression in podocytes with subsequent onset of proteinuria, a risk factor for progressive chronic kidney disease (CKD) frequently observed after AKI. This study aimed to investigate the therapeutic efficacy of LPS removal in decreasing albuminuria through the reduction of podocyte CD80 expression. Between January 2015 and December 2017, 70 consecutive patients with Gram-negative sepsis-induced AKI were randomised to either have Coupled Plasma Filtration and Adsorption (CPFA) added to the standard care (n=35) or not (n=35). To elucidate the possible relationship between LPS-induced renal damage, proteinuria and CD80 expression in Gram- sepsis, a swine model of LPS-induced AKI was set up. 3-hours after LPS infusion, animals were treated or not with CPFA for 6-hours. Treatment with CPFA significantly reduced serum cytokines, CRP, procalcitonin and endotoxin levels in patients with Gram-negative sepsis-induced AKI. CPFA significantly lowered also proteinuria and CD80 urinary excretion. In the swine model of LPS-induced AKI, CD80 glomerular expression, which was undetectable in control pigs, was markedly increased at the podocyte level in LPS-exposed animals. CPFA significantly reduced LPS-induced proteinuria and podocyte CD80 expression in septic pigs. Our data indicate that LPS induces albuminuria via podocyte expression of CD80 and suggest a possible role of timely LPS removal in preventing the maladaptive repair of the podocytes and the consequent increased risk of CKD in sepsis-induced AKI
    corecore