128 research outputs found

    Conformal Field Theories, Representations and Lattice Constructions

    Get PDF
    An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z2Z_2-twisted theories, H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) respectively, which may be constructed from a suitable even Euclidean lattice Λ\Lambda. Similarly, one may construct lattices ΛC\Lambda_C and Λ~C\tilde\Lambda_C by analogous constructions from a doubly-even binary code CC. In the case when CC is self-dual, the corresponding lattices are also. Similarly, H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) are self-dual if and only if Λ\Lambda is. We show that H(ΛC)H(\Lambda_C) has a natural ``triality'' structure, which induces an isomorphism H(Λ~C)≡H~(ΛC)H(\tilde\Lambda_C)\equiv\tilde H(\Lambda_C) and also a triality structure on H~(Λ~C)\tilde H(\tilde\Lambda_C). For CC the Golay code, Λ~C\tilde\Lambda_C is the Leech lattice, and the triality on H~(Λ~C)\tilde H(\tilde\Lambda_C) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.Comment: 65 page

    Single measurement to predict potential mineralizable nitrogen

    Get PDF
    Non-Peer ReviewedAlthough soil nitrate nitrogen (N) has been used as a basis for N fertilizer recommendation in western Canada, potential mineralizable N should be (or is) a more accurate indicator of the N supplying power of the soil. Potential mineralizable N, analyzed by extraction with hot KCl, and organic matter content were determined on the AESA Soil Quality Benchmark Sites in Alberta. Using these results, we developed an approach to estimate Nt from soil organic matter, based on the equation Nt=No(1-e-kt)y, and validated the calculated Nt with the hot KCl extracted N. Results indicated that the potential mineralizable N released from soil differed among ecoregions and slope positions. Potential mineralizable N is lower in southern Alberta than central Alberta. The lower slopes released more N than higher slope positions. Nt released in soil over the growing season correlated well with hot KCl extracted N in three different slope positions. However, variability of Nt in the upper slope position was greater than middle and lower slopes due to a shallow A horizon and variable soil moisture during the growing season. After removal of outliers (9% of the total data set), the values of R2 (regression of hot KCl with calculated Nt) are 0.529, 0.576 and 0.627 for upper, middle and lower slope position, respectively. Using calculated Nt results, a potential mineralizable map in Alberta has been developed. This map will guide producers to manage soil as well as fertilizer N

    The structure of parafermion vertex operator algebras

    Get PDF
    It is proved that the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A_1^{(1)} of level k coincides with a certain W-algebra. In particular, a set of generators for the parafermion vertex operator algebra is determined.Comment: 12 page

    The charges of a twisted brane

    Full text link
    The charges of the twisted D-branes of certain WZW models are determined. The twisted D-branes are labelled by twisted representations of the affine algebra, and their charge is simply the ground state multiplicity of the twisted representation. It is shown that the resulting charge group is isomorphic to the charge group of the untwisted branes, as had been anticipated from a K-theory calculation. Our arguments rely on a number of non-trivial Lie theoretic identities.Comment: 27 pages, 1 figure, harvmac (b

    Fluctuating Elastic Rings: Statics and Dynamics

    Full text link
    We study the effects of thermal fluctuations on elastic rings. Analytical expressions are derived for correlation functions of Euler angles, mean square distance between points on the ring contour, radius of gyration, and probability distribution of writhe fluctuations. Since fluctuation amplitudes diverge in the limit of vanishing twist rigidity, twist elasticity is essential for the description of fluctuating rings. We find a crossover from a small scale regime in which the filament behaves as a straight rod, to a large scale regime in which spontaneous curvature is important and twist rigidity affects the spatial configurations of the ring. The fluctuation-dissipation relation between correlation functions of Euler angles and response functions, is used to study the deformation of the ring by external forces. The effects of inertia and dissipation on the relaxation of temporal correlations of writhe fluctuations, are analyzed using Langevin dynamics.Comment: 43 pages, 9 Figure

    Spinons and parafermions in fermion cosets

    Get PDF
    We introduce a set of gauge invariant fermion fields in fermionic coset models and show that they play a very central role in the description of several Conformal Field Theories (CFT's). In particular we discuss the explicit realization of primaries and their OPE in unitary minimal models, parafermion fields in ZkZ_k CFT's and that of spinon fields in SU(N)k,k=1SU(N)_k, k=1 Wess-Zumino-Witten models (WZW) theories. The higher level case (k>1k>1) will be briefly discussed. Possible applications to QHE systems and spin-ladder systems are addressed.Comment: 6 pages, Latex file. Invited talk at International Seminar dedicated to the memory of D.V.Volkov, Kharkov, January 5-7, 199

    Twisted boundary states in c=1 coset conformal field theories

    Get PDF
    We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the diagonal modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n)_1 \oplus so(2n)_1/so(2n)_2, which is equivalent with the orbifold S^1/\Z_2. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield the conformal boundary states that preserve only the Virasoro algebra.Comment: 44 pages, 1 figure; (v2) minor change in section 2.3, references adde

    Kac-Moody algebras in perturbative string theory

    Get PDF
    The conjecture that M-theory has the rank eleven Kac-Moody symmetry e11 implies that Type IIA and Type IIB string theories in ten dimensions possess certain infinite dimensional perturbative symmetry algebras that we determine. This prediction is compared with the symmetry algebras that can be constructed in perturbative string theory, using the closed string analogues of the DDF operators. Within the limitations of this construction close agreement is found. We also perform the analogous analysis for the case of the closed bosonic string.Comment: 31 pages, harvmac (b), 4 eps-figure

    On the Deformation of Dendrites During Directional Solidification of a Nickel-Based Superalloy

    Get PDF
    Abstract: Synchrotron X-ray imaging has been used to examine in situ the deformation of dendrites that takes place during the solidification of a nickel-based superalloy. By combining absorption and diffraction contrast imaging, deformation events could be classified by their localization and permanence. In particular, a deformation mechanism arising from thermal contraction in a temperature gradient was elucidated through digital image correlation. It was concluded that this mechanism may explain the small misorientations typically observed in single crystal castings
    • …
    corecore