382 research outputs found

    Moses and Other Titles.

    Get PDF

    Water-Soluble Fullerene (C60) Derivatives as Nonviral Gene-Delivery Vectors

    Get PDF
    A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents

    Chitosan-Graft-Branched Polyethylenimine Copolymers: Influence of Degree of Grafting on Transfection Behavior

    Get PDF
    BACKGROUND: Successful non-viral gene delivery currently requires compromises to achieve useful transfection levels while minimizing toxicity. Despite high molecular weight (MW) branched polyethylenimine (bPEI) is considered the gold standard polymeric transfectant, it suffers from high cytotoxicity. Inversely, its low MW counterpart is less toxic and effective in transfection. Moreover, chitosan is a highly biocompatible and biodegradable polymer but characterized by very low transfection efficiency. In this scenario, a straightforward approach widely exploited to develop effective transfectants relies on the synthesis of chitosan-graft-low MW bPEIs (Chi-g-bPEI(x)) but, despite the vast amount of work that has been done in developing promising polymeric assemblies, the possible influence of the degree of grafting on the overall behavior of copolymers for gene delivery has been largely overlooked. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of providing a comprehensive evaluation of the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of copolymeric vectors, we have synthesized seven Chi-g-bPEI(x) derivatives with a variable amount of bPEI grafts (minimum: 0.6%; maximum: 8.8%). Along the Chi-g-bPEI(x) series, the higher the degree of grafting, the greater the ζ-potential and the cytotoxicity of the resulting polyplexes. Most important, in all cell lines tested the intermediate degree of grafting of 2.7% conferred low cytotoxicity and higher transfection efficiency compared to other Chi-g-bPEI(x) copolymers. We emphasize that, in transfection experiments carried out in primary articular chondrocytes, Chi-g-bPEI(2.7%) was as effective as and less cytotoxic than the gold standard 25 kDa bPEI. CONCLUSIONS/SIGNIFICANCE: This work underlines for the first time the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of Chi-g-bPEI(x) copolymers. Crucially, we have demonstrated that, along the copolymer series, the fine tuning of the degree of grafting directly affected the overall charge of polyplexes and, altogether, had a direct effect on cytotoxicity

    The Adaptor Function of TRAPPC2 in Mammalian TRAPPs Explains TRAPPC2-Associated SEDT and TRAPPC9-Associated Congenital Intellectual Disability

    Get PDF
    Background: The TRAPP (Transport protein particle) complex is a conserved protein complex functioning at various steps in vesicle transport. Although yeast has three functionally and structurally distinct forms, TRAPPI, II and III, emerging evidence suggests that mammalian TRAPP complex may be different. Mutations in the TRAPP complex subunit 2 (TRAPPC2) cause X-linked spondyloepiphyseal dysplasia tarda, while mutations in the TRAPP complex subunit 9 (TRAPPC9) cause postnatal mental retardation with microcephaly. The structural interplay between these subunits found in mammalian equivalent of TRAPPI and those specific to TRAPPII and TRAPPIII remains largely unknown and we undertook the present study to examine the interaction between these subunits. Here, we reveal that the mammalian equivalent of the TRAPPII complex is structurally distinct from the yeast counterpart thus leading to insight into mechanism of disease. Principal Findings: We analyzed how TRAPPII- or TRAPPIII- specific subunits interact with the six-subunit core complex of TRAPP by co-immunoprecipitation in mammalian cells. TRAPPC2 binds to TRAPPII-specific subunit TRAPPC9, which in turn binds to TRAPPC10. Unexpectedly, TRAPPC2 can also bind to the putative TRAPPIII-specific subunit, TRAPPC8. Endogenous TRAPPC9-positive TRAPPII complex does not contain TRAPPC8, suggesting that TRAPPC2 binds to either TRAPPC9 or TRAPPC8 during the formation of the mammalian equivalents of TRAPPII or TRAPPIII, respectively. Therefore, TRAPPC2 serves as an adaptor for the formation of these complexes. A disease-causing mutation of TRAPPC2, D47Y, failed to interact with either TRAPPC9 or TRAPPC8, suggesting that aspartate 47 in TRAPPC2 is at or near the site of interaction with TRAPPC9 or TRAPPC8, mediating the formation of TRAPPII and/or TRAPPIII. Furthermore, disease-causing deletional mutants of TRAPPC9 all failed to interact with TRAPPC2 and TRAPPC10. Conclusions: TRAPPC2 serves as an adaptor for the formation of TRAPPII or TRAPPIII in mammalian cells. The mammalian equivalent of TRAPPII is likely different from the yeast TRAPPII structurally. © 2011 Zong et al.published_or_final_versio

    A Novel Mechanism Is Involved in Cationic Lipid-Mediated Functional siRNA Delivery

    Get PDF
    A key challenge for therapeutic application of RNA interference is to efficiently deliver synthetic small interfering RNAs (siRNAs) into target cells that will lead to the knockdown of the target transcript (functional siRNA delivery). To facilitate rational development of nonviral carriers, we have investigated by imaging, pharmacological and genetic approaches the mechanisms by which a cationic lipid carrier mediates siRNA delivery into mammalian cells. We show that 95% of siRNA lipoplexes enter the cells through endocytosis and persist in endolysosomes for a prolonged period of time. However, inhibition of clathrin-, caveolin-, or lipid-raft-mediated endocytosis or macropinocytosis fails to inhibit the knockdown of the target transcript. In contrast, depletion of cholesterol from the plasma membrane has little effect on the cellular uptake of siRNA lipoplexes, but it abolishes the target transcript knockdown. Furthermore, functional siRNA delivery occurs within a few hours and is gradually inhibited by lowering temperatures. These results demonstrate that although endocytosis is responsible for the majority of cellular uptake of siRNA lipoplexes, a minor pathway, probably mediated by fusion between siRNA lipoplexes and the plasma membrane, is responsible for the functional siRNA delivery. Our findings suggest possible directions for improving functional siRNA delivery by cationic lipids.National Institutes of Health (U.S.) (NIH Grant AI56267)National Institutes of Health (U.S.) (NIH Grant CA112967)National Institutes of Health (U.S.) (NIH Grant CA119349)Natural Sciences and Engineering Research Council of Canada (NSERC) (Post-doctoral fellowship

    DNA vaccination for prostate cancer: key concepts and considerations

    Get PDF
    While locally confined prostate cancer is associated with a low five year mortality rate, advanced or metastatic disease remains a major challenge for healthcare professionals to treat and is usually terminal. As such, there is a need for the development of new, efficacious therapies for prostate cancer. Immunotherapy represents a promising approach where the host’s immune system is harnessed to mount an anti-tumour effect, and the licensing of the first prostate cancer specific immunotherapy in 2010 has opened the door for other immunotherapies to gain regulatory approval. Among these strategies DNA vaccines are an attractive option in terms of their ability to elicit a highly specific, potent and wide-sweeping immune response. Several DNA vaccines have been tested for prostate cancer and while they have demonstrated a good safety profile they have faced problems with low efficacy and immunogenicity compared to other immunotherapeutic approaches. This review focuses on the positive aspects of DNA vaccines for prostate cancer that have been assessed in preclinical and clinical trials thus far and examines the key considerations that must be employed to improve the efficacy and immunogenicity of these vaccines
    • …
    corecore