59 research outputs found

    Wheelchair-specific fitness of inactive people with long-term spinal cord injury

    Full text link

    Respiratory function and respiratory complications in spinal cord injury: protocol for a prospective, multicentre cohort study in high-income countries

    Get PDF
    Introduction Pneumonia is one of the leading complications and causes of death after a spinal cord injury (SCI). After a cervical or thoracic lesion, impairment of the respiratory muscles decreases respiratory function, which increases the risk of respiratory complications. Pneumonia substantially reduces patient’s quality of life, may prolong inpatient rehabilitation time, increase healthcare costs or at worse, lead to early death. Respiratory function and coughing can be improved through various interventions after SCI, but the available evidence as to which as

    Low-intensity wheelchair training in inactive people with long-term spinal cord injury: A randomized controlled trial on fitness, wheelchair skill performance and physical activity levels

    Get PDF
    Objective: To investigate the effects of low-intensity wheelchair training on wheelchair-specific fitness, wheelchair skill performance and physical activity levels in inactive people with long-term spinal cord injury. Design: Randomized controlled trial. Participants: Inactive manual wheelchair users with spinal cord injury for at least 10 years (n = 29), allocated to exercise (n = 14) or no exercise. Methods: The 16-week training consisted of wheelchair treadmill-propulsion at 30-40% heart rate reserve or equivalent in terms of rate of perceived exertion, twice a week, for 30 min per session. Wheelchair-specific fitness was determined as the highest 5-s power output over 15-m overground wheelchair sprinting (P5-15m), isometric push-force, submaximal fitness and peak aerobic work capacity. Skill was determined as performance time, ability and strain scores over a wheelchair circuit. Activity was determined using a questionnaire and an odometer. Results: Significant training effects appeared only in P5-15m (exercise vs control: mean +2.0 W vs -0.7 W, p = 0.017, ru=0.65). Conclusion: The low-intensity wheelchair training appeared insufficient for substantial effects in the sample of inactive people with long-term spinal cord injury, presumably in part owing to a too-low exercise frequency. Effective yet feasible and sustainable training, as well as other physical activity programmes remain to be developed for inactive people with long-term spinal cord injury. Key words: activities of daily living; paraplegia; physical activity; physical fitness; spinal cord injuries; tetraplegia; rehabilitation; wheelchairs

    Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy

    Get PDF
    In this work, the transfer of excitation energy was studied in native and cation-depletion induced, unstacked thylakoid membranes of spinach by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission spectra at 5 K show an increase in photosystem I (PSI) emission upon unstacking, which suggests an increase of its antenna size. Fluorescence excitation measurements at 77 K indicate that the increase of PSI emission upon unstacking is caused both by a direct spillover from the photosystem II (PSII) core antenna and by a functional association of light-harvesting complex II (LHCII) to PSI, which is most likely caused by the formation of LHCII-LHCI-PSI supercomplexes. Time-resolved fluorescence measurements, both at room temperature and at 77 K, reveal differences in the fluorescence decay kinetics of stacked and unstacked membranes. Energy transfer between LHCII and PSI is observed to take place within 25 ps at room temperature and within 38 ps at 77 K, consistent with the formation of LHCII-LHCI-PSI supercomplexes. At the 150-160 ps timescale, both energy transfer from LHCII to PSI as well as spillover from the core antenna of PSII to PSI is shown to occur at 77 K. At room temperature the spillover and energy transfer to PSI is less clear at the 150 ps timescale, because these processes compete with charge separation in the PSII reaction center, which also takes place at a timescale of about 150 ps. © 2007 Springer Science+Business Media B.V

    Respiratory function and respiratory complications in spinal cord injury: protocol for a prospective, multicentre cohort study in high-income countries

    Get PDF
    Introduction Pneumonia is one of the leading complications and causes of death after a spinal cord injury (SCI). After a cervical or thoracic lesion, impairment of the respiratory muscles decreases respiratory function, which increases the risk of respiratory complications. Pneumonia substantially reduces patient’s quality of life, may prolong inpatient rehabilitation time, increase healthcare costs or at worse, lead to early death. Respiratory function and coughing can be improved through various interventions after SCI, but the available evidence as to which as

    Alteration of Proteins and Pigments Influence the Function of Photosystem I under Iron Deficiency from Chlamydomonas reinhardtii

    Get PDF
    BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency

    Double-quantum resonances and exciton-scattering in coherent 2D spectroscopy of photosynthetic complexes

    No full text
    A simulation study demonstrates how the nonlinear optical response of the Fenna–Matthews–Olson photosynthetic light-harvesting complex may be explored by a sequence of laser pulses specifically designed to probe the correlated dynamics of double excitations. Cross peaks in the 2D correlation plots of the spectra reveal projections of the double-exciton wavefunctions onto a basis of direct products of single excitons. An alternative physical interpretation of these signals in terms of quasiparticle scattering is developed
    • …
    corecore