104 research outputs found

    Ein paläoökologischer Beitrag zum besseren Verständnis der natürlichen Vegetation der Schweiz

    Get PDF
    Zusammenfassung: Wie natürlich oder naturnah ist eine Pflanzengemeinschaft oder eine Landschaft? Diese Frage ist von Interesse, wenn wir verstehen wollen, wie unsere heutigen Landschaften entstanden sind. Noch wichtiger ist sie aber, wenn abgeschätzt werden muss, welche Massnahmen zum Schutz und zur Bewahrung der Funktionen eines bestimmten Vegetations-, Umwelt- oder Landschaftstyps notwendig sind. Wir fassen hier die Erkenntnisse aus über 30 paläoökologischen Untersuchen zur postglazialen Vegetationsgeschichte in der Schweiz zusammen. Die Kombination von Pollen- und Makrorestauswertungen sowie die Untersuchung von mikro- und makroskopischen Holzkohle-Partikeln und der Vergleich mit Klimaindikatoren ermöglicht es, die Vegetationsentwicklung mit hoher zeitlicher und räumlicher Auflösung zu rekonstruieren. Gemeinsame Trends bei der Vegetationsentwicklung gehen vorwiegend auf die Klimadynamik zurück, es gibt aber nennenswerte Unterschiede in Abhängigkeit vom Bodentyp, der menschlichen Aktivität (besonders unter Einsatz des Feuers) oder der Höhenlage. Verschiedene Waldtypen, die bis anhin unter den jeweiligen Klimabedingungen als natürlich betrachtet wurden, sind das Resultat menschlicher Landnutzung über die Jahrtausende, insbesondere ist die Dominanz einzelner weniger Baumarten in den Wäldern der Schweiz anthropogen bedingt. Umgekehrt wurden lokale, isolierte Bestände nicht als Relikte natürlicher Wälder betrachtet. Die Vielfalt der Waldvegetation hat also stark abgenommen, während dem die gesamte Biodiversität stark zugenommen hat, vorwiegend als Folge der Ausbreitung von Offenlandarten durch landwirtschaftliche Tätigkeiten. Die Paläoökologie hat also dazu beigetragen, die Natürlichkeit von Pflanzengesellschaften neu einzuschätzen und die Reaktionsweisen auf Störungen besser zu verstehen. In diesem Sinne stellen wir neue Projekte vor, in denen die Paläoökologie eingesetzt wird, um Kenntnisse zu gewinnen, die für Naturschutz, Waldbau und die Planung von Nationalparks unentbehrlich sin

    Vegetation response to rapid climate change during the Lateglacial-Early Holocene transition at Gola di Lago, southern Switzerland

    Get PDF
    Predicting the effects of ongoing climate warming on vegetation requires a long-term perspective of past ecosystem dynamics. We therefore analysed the sedimentary record from the mire Gola di Lago (985 m a.s.l.) in southern Switzerland, to better understand the vegetation response to past rapid climate change. We present a high-resolution pollen and plant macrofossil study from the Lateglacial to the Early Holocene (13 400-10 400 cal. a BP), a climatic transition that represents a close analogue to current global warming. The vegetation responses during this time match previously analysed palaeoecological sites south of the Alps. At the end of the Bolling-Allerod interstadial, the site was surrounded by open larch forest. The beginning of the Younger Dryas was characterized by the local presence and rapid expansion of Pinus cembra, whereas the second part was dominated by Pinus sylvestris, Betula and Larix decidua. These vegetation dynamics agree well with independent climate data indicating a cold and dry start and a subsequent shift to slightly warmer climate. The following rapid temperature increase at the beginning of the Holocene resulted in an increase in forest density and the establishment of novel temperate vegetation assemblages, without major changes in species diversity. Noteworthy, during the Younger Dryas-Early Holocene transition, long-lived cold-adapted tree line species such as P. cembra and L. decidua persisted over several centuries, while open boreal forests dominated by P. sylvestris and Betula expanded, indicating high resilience to climatic changes. The results of Gola di Lago suggest that climate warming led to a significant change in vegetation communities through species range shifts. Our study also indicates that some species may potentially be able to locally persist under current global warming, forming novel vegetation assemblages with newly establishing species

    New vegetation history reconstructions suggest a biostratigraphic assignment of the lowermost Rodderberg interglacial (Germany) to MIS 11

    Get PDF
    Along with the ongoing climate crisis, research efforts increasingly focus on Pleistocene environmental archives. Interglacial periods are of special interest, as they offer crucial information about natural interactions (i.e. not influenced by human activities) between climate and ecosystems within a climatic setting comparable to the Holocene and/or climate change projections. The sedimentary infill of the Rodderberg crater, 10 km south of the city of Bonn (Germany), records several glacial-interglacial cycles in superposition, which makes it a rare and promising environmental archive. One of the most challenging targets is to establish a robust chronological framework for the Rodderberg sediment sequence. In the present study we reconstruct the vegetation history of the basal and most prominent interglacial sequence, the lowermost Rodderberg interglacial (LRI), and apply the principles of pollen biostratigraphy to estimate the depositional age. At the base of the sequence steppe tundra conditions prevailed during the cryocratic phase before the onset of the interglacial. Rising temperatures caused afforestation of the landscape with boreal forests during the protocratic phase, which subsequently were replaced by temperate forests in the mesocratic phase. The sequence continues under unstable vegetation conditions characterized by temperate forests dominated by Carpinus and Abies during the oligocratic phase. During the terminal part of the LRI, the telocratic phase, boreal to nemoboreal forests covered the landscape. Due to climatic deterioration these forests collapsed and a steppe tundra evolved again (cryocratic phase). This climate-driven glacial-interglacial cycle is followed by an interstadial with rather closed nemoboreal forest vegetation. Based on the occurrences of characteristic taxa as well as the vegetation assemblages and succession, we refrain from correlating the LRI with any of the warm stages between c. 240 and 180 ka BP, i.e. roughly corresponding to MIS 7. A correlation with the Holsteinian, which was previously physically dated to c. 340e325 ka BP, cannot unambiguously be excluded, however, the absence of Pterocarya during the LRI argues against it. Instead, the LRI has striking similarities with the Kärlich interglacial, which has been previously physically dated to c. 400 ka BP, making it chronologically equivalent to MIS 11

    Effects of temporal floral resource availability and non-crop habitats on broad bean pollination

    Get PDF
    Context Flowering plants can enhance wild insect populations and their pollination services to crops in agricultural landscapes, especially when they flower before the focal crop. However, characterizing the temporal availability of specific floral resources is a challenge. Objectives Developing an index for the availability of floral resources at the landscape scale according to the specific use by a pollinator. Investigating whether detailed and temporally-resolved floral resource maps predict pollination success of broad bean better than land cover maps. Methods We mapped plant species used as pollen source by bumblebees in 24 agricultural landscapes and developed an index of floral resource availability for different times of the flowering season. To measure pollination success, patches of broad bean (Vicia faba), a plant typically pollinated by bumblebees, were exposed in the center of selected landscapes. Results Higher floral resource availability before bean flowering led to enhanced seed set. Floral resource availability synchronous to broad bean flowering had no effect. Seed set was somewhat better explained by land cover maps than by floral resource availability, increasing with urban area and declining with the cover of arable land. Conclusions The timing of alternative floral resource availability is important for crop pollination. The higher explanation of pollination success by land cover maps than by floral resource availability indicates that additional factors such as habitat disturbance and nesting sites play a role in pollination. Enhancing non-crop woody plants in agricultural landscapes as pollen sources may ensure higher levels of crop pollination by wild pollinators such as bumblebees

    Beyond lake villages. Archaeological excavations and paleoecologal analysis at Lake Burgäschi/Switzerland.

    Get PDF
    In 2015 started the international research project “Beyond lake villages: Studying Neolithic environmental changes and human impact at small lakes in Switzerland, Germany and Austria.” (University of Bern in collaboration with Landesdenkmalamt Baden-Würtemberg and University of Vienna, funding: SNF-DFG-FFW). Three archaeological and three palaeoecological teams work together on three small lakes on the Northern side of the Alps. The aim is to compare environmental changes and human impact of Neolithic societies. The Swiss study area is Lake Burgäschi, a small water body in the central part of the Swiss Midlands. Archaeological research started already in 1877 and several major excavation campaigns took place in the 1940ies and 1950ies. Up to now four settlement of the 4th millennium BC areas are known and single finds indicate settlement activities during the 5th and 3rd millennia BC. The presentation gives an overview on former and recent activities in one of the classic find spots of Swiss pile-dwellings research. A special focus will be put on new archaeological and palaeoecological results

    Postglacial fire regime changes and vegetation dynamics at Lake Victoria, Africa

    Get PDF
    Lake Victoria is the largest tropical lake on the planet. Located in East Africa at an altitude of 1135 m asl, it lies across the limits between two major climatic zones with a temperature and moisture gradient and associated tropical biomes, the rain forest, and the savanna. At higher altitudes > 1200-2500 m a.s.l. temperatures are significantly lower and vegetation forms an Afromontane belt. Primarily triggered by climate shifts, these three biomes and fire regimes have been dynamically interspersing over the last 17,000 years. Here, we present a robust 14C chronology mainly based on macroscopic charcoal using the MICADAS system of LARA at the University of Bern, new palynological data used as biostratigraphic control, and the first continuous charcoal record in Lake Victoria to establish the fire history. Our pollen and macro-charcoal records, support the assumption that throughout time regional fire dynamics are controlled by biome's changes, and that climate was the main driver of these vegetation shifts at least until the Iron Age. Our results indicate that during the Last Glacial Maxima and Heinrich Stadial 1, under dry and colder climates the savanna was dominating, with low fire regimes before 15,000 cal yr BP and increased fire occurrence between 15,000 and 14,000 cal yr BP. After this period, the Afromontane forest started to expand, and warmer and humid climates promoted the growth of rain forests and reduced fire events, which is particularly observed in the African Humid Period (between ca. 11,500 and 5000 cal yr BP). Subsequently, our records indicate a global maximum of fire occurrence at 5000 cal yr BP, followed by unexpectedly low fire regimes during the Iron Age and the subsequent periods. This work is part of a SINERGIA project funded by the Swiss National Foundation which seeks to unravel the long-term causes and consequences of Lake Victoria's ecosystem dynamics with a special focus on the evolution of fish species and other biotas from the late Pleistocene to the present

    Palynological investigations reveal Eemian interglacial vegetation dynamics at Spiezberg, Bernese Alps, Switzerland

    Get PDF
    Interglacial pollen records are valuable archives of past vegetation dynamics and provide important information about vegetation responses to different-than-today climates. Interglacial pollen archives pre-dating the Last Glacial Maximum (LGM) are scarce on the Swiss Plateau in contrast to the many available Late Glacial and Holocene records. This is mainly due to the rapidly changing palaeo- environmental conditions throughout the Quaternary and the low preservation potential of material suitable for palynological investigations. The Spiezberg site offers a palynological record situated most proximal to the Alps in Switzerland. Previous investigations tentatively assigned this record to the Eemian interglacial (MIS 5e). We have conducted additional pollen analytical investigations to increase the quantity of pollen information. Besides biostratigraphic interpretations, we use numerical methods such as distance analysis (distantia) and ordination techniques (PCA) to evaluate the similarities and differences between the Spiezberg record and its geographically and chronostratigraphically closest physically dated (U/Th, luminescence) analogues from the Eemian (MIS 5e) and Meikirch 3 (MIS 7a) interglacials. Our palynological investigations reveal the predominance of closed temperate forests with abundant fir (Abies) and spruce (Picea) as well as evergreen broad-leaved taxa (e.g. Hedera). The attri- bution to the Eemian interglacial relies on the observation of very rare beech (Fagus) occurrences, a phase with prominent yew (Taxus) and the unimportance of hornbeam (Carpinus), all of which are typical Eemian features on the Swiss Plateau. An Eemian age is supported by the numerical comparison with the Beerenmo€sli (MIS 5e) and Meikirch 3 (MIS 7a) reference records. Furthermore, the Picea, Taxus and Fagus dynamics observed on the Swiss Plateau during the Eemian are in excellent agreement with vegetational patterns observed elsewhere in Central Europe. Surprisingly, Carpinus was almost absent on the Swiss Plateau during the Eemian, whereas it was a major component of the forest at other European sites with a similar elevation as Spiezberg. We explain this by environmental conditions and the strong competition with Abies alba. In particular, considering the European Eemian vegetation history and the results of our reconstructions from the Swiss Plateau, we find that Abies alba was a highly competitive tree under natural warmer-than-today conditions. This finding provides further evidence that Abies alba may benefit from future climate warming

    Chipped Stone Assemblage of the Layer B of the Kamyana Mohyla 1 Site (South-Eastern Ukraine) and the Issue of Kukrek in the North Meotic Steppe Region

    Get PDF
    The layer B is one of the lower layers of the long stratigraphic sequence of the Kamyana Mohyla 1 site. The layer B received eight new AMS radiocarbon dates that clarified its chronology: 7950–7300 calibrated years BC. They are in a reasonable correspondence with the dates for lower and upper layers. The lithic assemblage belongs to Kukrek cultural aspect. It is characterized by pencil-like conical cores, Kukrek inserts, Kukrek burins and Dęby burins, nongeometric microliths (oblique points). The assemblage finds close parallels in the sites of Kukrek, Ihren VIII, Melnychna Krucha SU4 and Domchi-Kaia. They can be united into Kukrek sensu stricto cultural unit. The overlying layer C yielded somewhat different complex that finds parallels in the materials of the so-called “Kukrek cultural tradition.” Due to clear stratigraphic position of these units in the Kamyana Mohyla 1 sequence, we are able to differentiate Kukrek sensu stricto and “Kukrek cultural tradition” and suggest their respective chronological positions
    • …
    corecore