134 research outputs found

    Modulation of the Arginase Pathway in the Context of Microbial Pathogenesis: A Metabolic Enzyme Moonlighting as an Immune Modulator

    Get PDF
    Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology

    A Cytochrome b561 with Ferric Reductase Activity from the Parasitic Blood Fluke, Schistosoma japonicum

    Get PDF
    Parasites acquire their food from their hosts, either by feeding directly on tissues of the host, or by competing for ingested food. Adult schistosomes live within the vasculature of humans and rely on the blood cells and plasma they ingest and dissolved solutes they derive across their body surface, the tegument, for their nutrition. Schistosomes require host trace elements, notably iron, which is used as a co-factor in many biological reactions. Iron is especially important for schistosomes, for it has a significant role in egg formation and embryogenesis. In human tissues, iron predominates in the trivalent (ferric) form; however, it is the divalent (ferrous) form that is used as an essential co-factor for multiple biomolecules and enzymes. In order to be acquired from the host environment, the valency of iron must be modified to render it suitable for transport across the parasite membrane. This paper describes the molecular characterisation of a schistosome molecule that is crucial for bringing about this change in iron. Schistosoma japonicum Cytb561 is the first ferric reductase characterised in any parasitic helminth and emphasises the importance of iron, and other divalent cations, in these organisms

    Identification and Characterization of a Mef2 Transcriptional Activator in Schistosome Parasites

    Get PDF
    Myocyte enhancer factor 2 protein (Mef2) is an evolutionarily conserved activator of transcription that is critical to induce and control complex processes in myogenesis and neurogenesis in vertebrates and insects, and osteogenesis in vertebrates. In Drosophila, Mef2 null mutants are unable to produce differentiated muscle cells, and in vertebrates, Mef2 mutants are embryonic lethal. Schistosome worms are responsible for over 200 million cases of schistosomiasis globally, but little is known about early development of schistosome parasites after infecting a vertebrate host. Understanding basic schistosome development could be crucial to delineating potential drug targets. Here, we identify and characterize Mef2 from the schistosome worm Schistosoma mansoni (SmMef2). We initially identified SmMef2 as a homolog to the yeast Mef2 homolog, Resistance to Lethality of MKK1P386 overexpression (Rlm1), and we show that SmMef2 is homologous to conserved Mef2 family proteins. Using a genetics approach, we demonstrate that SmMef2 is a transactivator that can induce transcription of four separate heterologous reporter genes by yeast one-hybrid analysis. We also show that Mef2 is expressed during several stages of schistosome development by quantitative PCR and that it can bind to conserved Mef2 DNA consensus binding sequences

    Cloning of a gene (SR-A1), encoding for a new member of the human Ser/Arg-rich family of pre-mRNA splicing factors: overexpression in aggressive ovarian cancer

    Get PDF
    By using the positional cloning gene approach, we were able to identify a novel gene encoding for a serine/arginine-rich protein, which appears to be the human homologue of the rat A1 gene. We named this new gene SR-A1. Members of the SR family of proteins have been shown to interact with the C-terminal domain (CTD) of the large subunit of RNA polymerase II and participate in pre-mRNA splicing. We have localized the SR-A1 gene between the known genes IRF3 and RRAS on chromosome 19q13.3. The novel gene spans 16.7 kb of genomic sequence and it is formed of 11 exons and 10 intervening introns. The SR-A1 protein is composed of 1312 amino acids, with a molecular mass of 139.3 kDa and a theoretical isoelectric point of 9.31. The SR-A1 protein contains an SR-rich domain as well as a CTD-binding domain present only in a subset of SR-proteins. Through interactions with the pre-mRNA and the CTD domain of the Polymerase II, SR proteins have been shown to regulate alternative splicing. The SR-A1 gene is expressed in all tissues tested, with highest levels found in fetal brain and fetal liver. Our data suggest that this gene is overexpressed in a subset of ovarian cancers which are clinically more aggressive. Studies with the steroid hormone receptor-positive breast and prostate carcinoma cell lines ZR-75-1, BT-474 and LNCaP, respectively, suggest that SR-A1 is constitutively expressed. Furthermore, the mRNA of the SR-A1 gene in these cell lines appears to increase by estrogens, androgens and glucocorticoids, and to a lesser extend by progestins. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Identifying Schistosoma japonicum Excretory/Secretory Proteins and Their Interactions with Host Immune System

    Get PDF
    Schistosoma japonicum is a major infectious agent of schistosomiasis. It has been reported that large number of proteins excreted and secreted by S. japonicum during its life cycle are important for its infection and survival in definitive hosts. These proteins can be used as ideal candidates for vaccines or drug targets. In this work, we analyzed the protein sequences of S. japonicum and found that compared with other proteins in S. japonicum, excretory/secretory (ES) proteins are generally longer, more likely to be stable and enzyme, more likely to contain immune-related binding peptides and more likely to be involved in regulation and metabolism processes. Based on the sequence difference between ES and non-ES proteins, we trained a support vector machine (SVM) with much higher accuracy than existing approaches. Using this SVM, we identified 191 new ES proteins in S. japonicum, and further predicted 7 potential interactions between these ES proteins and human immune proteins. Our results are useful to understand the pathogenesis of schistosomiasis and can serve as a new resource for vaccine or drug targets discovery for anti-schistosome

    Identification of the Schistosoma mansoni TNF-Alpha Receptor Gene and the Effect of Human TNF-Alpha on the Parasite Gene Expression Profile

    Get PDF
    Schistosoma mansoni is the major causative agent of schistosomiasis in the Americas. This parasite takes advantage of host signaling molecules such as cytokines and hormones to complete its development inside the host. Tumor necrosis factor-alpha (TNF-α) is one of the most important host cytokines involved in the inflammatory response. When cercariae, the infective stage, penetrates the human skin the release of TNF-α is started. In this work the authors describe the complete sequence of a possible TNF-α receptor in S. mansoni and detect that the receptor is most highly expressed in cercariae among all life cycle stages. Aiming to mimic the situation at the site of skin penetration, cercariae were mechanically transformed in vitro into schistosomula and exposed to human TNF-α. Exposure of early-developing schistosomula to the human hormone caused a large-scale change in the expression of parasite genes. Exposure of adult worms to human TNF-α caused gene expression changes as well, and the set of parasite altered genes in the adult parasite was different from that of schistosomula. This work increases the number of known signaling pathways of the parasite, and opens new perspectives into understanding the molecular components of TNF-α response as well as into possibly interfering with parasite–host interaction

    Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis

    Get PDF
    Funding Information: This work was supported by the European Regional Development Fund (ERDF) grant Nr. 1.1.1.2/VIAA/1/16/144 “Structural and functional studies of Lyme disease agent Borrelia burgdorferi outer surface proteins to reveal the mechanisms of pathogenesis with the intention to create a new vaccine”. Diffraction data have been collected on BL14.1 at the BESSY II electron storage ring operated by the Helmholtz-Zentrum, Berlin. We would particularly like to acknowledge the help and support of Manfred S. Weiss and Christian Feiler during the experiment. Publisher Copyright: © 2018, The Author(s).Borrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.publishersversionPeer reviewe

    Insights into SCP/TAPS Proteins of Liver Flukes Based on Large-Scale Bioinformatic Analyses of Sequence Datasets

    Get PDF
    Background: SCP/TAPS proteins of parasitic helminths have been proposed to play key roles in fundamental biological processes linked to the invasion of and establishment in their mammalian host animals, such as the transition from free-living to parasitic stages and the modulation of host immune responses. Despite the evidence that SCP/TAPS proteins of parasitic nematodes are involved in host-parasite interactions, there is a paucity of information on this protein family for parasitic trematodes of socio-economic importance.\ud \ud Methodology/Principal Findings: We conducted the first large-scale study of SCP/TAPS proteins of a range of parasitic trematodes of both human and veterinary importance (including the liver flukes Clonorchis sinensis, Opisthorchis viverrini, Fasciola hepatica and F. gigantica as well as the blood flukes Schistosoma mansoni, S. japonicum and S. haematobium). We mined all current transcriptomic and/or genomic sequence datasets from public databases, predicted secondary structures of full-length protein sequences, undertook systematic phylogenetic analyses and investigated the differential transcription of SCP/TAPS genes in O. viverrini and F. hepatica, with an emphasis on those that are up-regulated in the developmental stages infecting the mammalian host.\ud \ud Conclusions: This work, which sheds new light on SCP/TAPS proteins, guides future structural and functional explorations of key SCP/TAPS molecules associated with diseases caused by flatworms. Future fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new approaches for the control of parasitic diseases

    Pharmacological targeting of NF-κB potentiates the effect of the topoisomerase inhibitor CPT-11 on colon cancer cells

    Get PDF
    NF-κB interferes with the effect of most anti-cancer drugs through induction of anti-apoptotic genes. Targeting NF-κB is therefore expected to potentiate conventional treatments in adjuvant strategies. Here we used a pharmacological inhibitor of the IKK2 kinase (AS602868) to block NF-κB activation. In human colon cancer cells, inhibition of NF-κB using 10 μM AS602868 induced a 30–50% growth inhibitory effect and strongly enhanced the action of SN-38, the topoisomerase I inhibitor and CPT-11 active metabolite. AS602868 also potentiated the cytotoxic effect of two other antineoplasic drugs: 5-fluorouracil and etoposide. In xenografts experiments, inhibition of NF-κB potentiated the antitumoural effect of CPT-11 in a dose-dependent manner. Eighty-five and 75% decreases in tumour size were observed when mice were treated with, respectively, 20 or 5 mg kg−1 AS602868 associated with 30 mg kg−1 CPT-11 compared to 47% with CPT-11 alone. Ex vivo tumour analyses as well as in vitro studies showed that AS602868 impaired CPT-11-induced NF-κB activation, and enhanced tumour cell cycle arrest and apoptosis. AS602868 also enhanced the apoptotic potential of TNFα on HT-29 cells. This study is the first demonstration that a pharmacological inhibitor of the IKK2 kinase can potentiate the therapeutic efficiency of antineoplasic drugs on solid tumours
    corecore