691 research outputs found

    Removal of spacecraft-surface particulate contaminants by simulated micrometeoroid impacts

    Get PDF
    A series of hypervelocity impacts has been conducted in an exploding lithium-wire accelerator to examine with a far-field holographic system the removal of particulate contaminants from external spacecraft surfaces subjected to micrometeoroid bombardment. The impacting projectiles used to simulate the micrometeoroids were glass spheres nominally 37 microns in diameter, having velocities between 4 and 17 km/sec. The particulates were glass spheres nominally 25, 50, and 75 microns in diameter which were placed on aluminum targets. For these test, particulates detached had velocities that were log-normally distributed. The significance of the log-normal behavior of the ejected-particulate velocity distribution is that the geometric mean velocity and the geometric standard deviation are the only two parameters needed to model completely the process of particles removed or ejected from a spacecraft surface by a micrometeoroid impact

    New insights into ultraluminous X-ray sources from deep XMM-Newton observations

    Full text link
    The controversy over whether ultraluminous X-ray sources (ULXs) contain a new intermediate-mass class of black holes (IMBHs) remains unresolved. We present new analyses of the deepest XMM-Newton observations of ULXs that address their underlying nature. We examine both empirical and physical modelling of the X-ray spectra of a sample of thirteen of the highest quality ULX datasets, and find that there are anomalies in modelling ULXs as accreting IMBHs with properties simply scaled-up from Galactic black holes. Most notably, spectral curvature above 2 keV in several sources implies the presence of an optically-thick, cool corona. We also present a new analysis of a 100 ks observation of Holmberg II X-1, in which a rigorous analysis of the temporal data limits the mass of its black hole to no more than 100 solar masses. We argue that a combination of these results points towards many (though not necessarily all) ULXs containing black holes that are at most a few 10s of solar mass in size.Comment: 5 pages, 2 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    A universal GRB photon energy-peak luminosity relation

    Full text link
    The energetics and emission mechanism of GRBs are not well understood. Here we demonstrate that the instantaneous peak flux or equivalent isotropic peak luminosity, L_iso ergs s^-1, rather than the integrated fluence or equivalent isotropic energy, E_iso ergs, underpins the known high-energy correlations. Using new spectral/temporal parameters calculated for 101 bursts with redshifts from BATSE, BeppoSAX, HETE-II and Swift we describe a parameter space which characterises the apparently diverse properties of the prompt emission. We show that a source frame characteristic-photon-energy/peak luminosity ratio, K_z, can be constructed which is constant within a factor of 2 for all bursts whatever their duration, spectrum, luminosity and the instrumentation used to detect them. The new parameterization embodies the Amati relation but indicates that some correlation between E_peak and E_iso follows as a direct mathematical inference from the Band function and that a simple transformation of E_iso to L_iso yields a universal high energy correlation for GRBs. The existence of K_z indicates that the mechanism responsible for the prompt emission from all GRBs is probably predominantly thermal.Comment: Submitted to Ap

    Does Every Quasar Harbor A Blazar?

    Get PDF
    Assuming there is a blazar type continuum in every radio-loud quasar, we find that the free-free heating due to the beamed infrared continuum can greatly enhance collisionally excited lines, and thus explain the stronger CIV λ\lambda1549 line emission observed in radio loud quasars. We further predict that the CIV line should show variability {\it not} associated with observed continuum or Lyα\alpha variability.Comment: 15 pages, 3 figures; to appear in Astrophys. J. Let

    Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines

    Get PDF
    The similarity of quasar line spectra has been taken as an indication that the emission line clouds have preferred parameters, suggesting that the environment is subject to a fine tuning process. We show here that the observed spectrum is a natural consequence of powerful selection effects. We computed a large grid of photoionization models covering the widest possible range of cloud gas density and distance from the central continuum source. For each line only a narrow range of density and distance from the continuum source results in maximum reprocessing efficiency, corresponding to ``locally optimally-emitting clouds'' (LOC). These parameters depend on the ionization and excitation potentials of the line, and its thermalization density. The mean QSO line spectrum can be reproduced by simply adding together the full family of clouds, with an appropriate covering fraction distribution. The observed quasar spectrum is a natural consequence of the ability of various clouds to reprocess the underlying continuum, and can arise in a chaotic environment with no preferred pressure, gas density, or ionization parameter.Comment: 9 pages including 1 ps figure. LaTeX format using aaspp4.st

    Accurate early positions for Swift GRBS: enhancing X-ray positions with UVOT astrometry

    Full text link
    Here we describe an autonomous way of producing more accurate prompt XRT positions for Swift-detected GRBs and their afterglows, based on UVOT astrometry and a detailed mapping between the XRT and UVOT detectors. The latter significantly reduces the dominant systematic error -- the star-tracker solution to the World Coordinate System. This technique, which is limited to times when there is significant overlap between UVOT and XRT PC-mode data, provides a factor of 2 improvement in the localisation of XRT refined positions on timescales of less than a few hours. Furthermore, the accuracy achieved is superior to astrometrically corrected XRT PC mode images at early times (for up to 24 hours), for the majority of bursts, and is comparable to the accuracy achieved by astrometrically corrected X-ray positions based on deep XRT PC-mode imaging at later times (abridged).Comment: 12 pages, 8 figures, 1 table, submitted to Astronomy and Astrophysics, August 7th 200

    Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift

    Get PDF
    We show that all X-ray decay curves of GRBs measured by Swift can be fitted using one or two components both of which have exactly the same functional form comprised of an early falling exponential phase followed by a power law decay. The 1st component contains the prompt gamma-ray emission and the initial X-ray decay. The 2nd component appears later, has a much longer duration and is present for ~80% of GRBs. It most likely arises from the external shock which eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the initial X-ray decay of the 1st component fades more slowly than the 2nd and dominates at late times to form an afterglow but it is not clear what the origin of this emission is. The temporal decay parameters and gamma/X-ray spectral indices derived for 107 GRBs are compared to the expectations of the standard fireball model including a search for possible "jet breaks". For ~50% of GRBs the observed afterglow is in accord with the model but for the rest the temporal and spectral indices do not conform to the expected closure relations and are suggestive of continued, late, energy injection. We identify a few possible jet breaks but there are many examples where such breaks are predicted but are absent. The time, T_a, at which the exponential phase of the 2nd component changes to a final powerlaw decay afterglow is correlated with the peak of the gamma-ray spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that this time is in some way related to optically observed break times measured for pre-Swift bursts.Comment: submitted to Ap
    • …
    corecore