research

Removal of spacecraft-surface particulate contaminants by simulated micrometeoroid impacts

Abstract

A series of hypervelocity impacts has been conducted in an exploding lithium-wire accelerator to examine with a far-field holographic system the removal of particulate contaminants from external spacecraft surfaces subjected to micrometeoroid bombardment. The impacting projectiles used to simulate the micrometeoroids were glass spheres nominally 37 microns in diameter, having velocities between 4 and 17 km/sec. The particulates were glass spheres nominally 25, 50, and 75 microns in diameter which were placed on aluminum targets. For these test, particulates detached had velocities that were log-normally distributed. The significance of the log-normal behavior of the ejected-particulate velocity distribution is that the geometric mean velocity and the geometric standard deviation are the only two parameters needed to model completely the process of particles removed or ejected from a spacecraft surface by a micrometeoroid impact

    Similar works