27 research outputs found

    Data from: Quantification of the sit-to-stand movement for monitoring age-related motor deterioration using the Nintendo Wii Balance Board

    No full text
    Simple methods for quantitative evaluations of individual motor performance are crucial for the early detection of motor deterioration. Sit-to-stand movement from a chair is a mechanically demanding component of activities of daily living. Here, we developed a novel method using the ground reaction force and center of pressure measured from the Nintendo Wii Balance Board to quantify sit-to-stand movement (sit-to-stand score) and investigated the age-related change in the sit-to-stand score as a method to evaluate reduction in motor performance. The study enrolled 503 participants (mean age ± standard deviation, 51.0 ± 19.7 years; range, 20-88 years; male/female ratio, 226/277) without any known musculoskeletal conditions that limit sit-to-stand movement, which were divided into seven 10-year age groups. The participants were instructed to stand up as quickly as possible, and the sit-to-stand score was calculated as the combination of the speed and balance indices, which have a tradeoff relationship. We also performed the timed up and go test, a well-known clinical test used to evaluate an individual's mobility. There were significant differences in the sit-to-stand score and timed up and go time among age groups. The mean sit-to-stand score for 60s, 70s, and 80s were 77%, 68%, and 53% of that for the 20s, respectively. The timed up and go test confirmed the age-related decrease in mobility of the participants. In addition, the sit-to-stand score measured using the Wii balance board was compared with that from a laboratory-graded force plate using the Bland-Altman plot (bias = −3.1 [ms]-1, 95% limit of agreement: −11.0 to 3.9 [ms]-1). The sit-to-stand score has good inter-device reliability (intraclass correlation coefficient = 0.87). Furthermore, the test-retest reliability is substantial (intraclass correlation coefficient = 0.64). Thus, the proposed STS score will be useful to detect the early deterioration of motor performance

    Data for age related difference in each index

    No full text
    Data for age, body height weight, TUG time, and STS parameters

    Data for test-retest reliability

    No full text
    Data for test-retest reliability in young participants

    Leg Muscle Activity and Joint Motion during Balance Exercise Using a Newly Developed Weight-Shifting-Based Robot Control System

    No full text
    A novel and fun exercise robot (LOCOBOT) was developed to improve balance ability. This system can control a spherical robot on a floor by changing the center of pressure (COP) based on weight-shifting on a board. The present study evaluated leg muscle activity and joint motion during LOCOBOT exercise and compared the muscle activity with walking and sit-to-stand movement. This study included 10 healthy male adults (age: 23.0 ± 0.9 years) and examined basic LOCOBOT exercises (front–back, left–right, 8-turn, and bowling). Electromyography during each exercise recorded 13 right leg muscle activities. Muscle activity was represented as the percentage maximal voluntary isometric contraction (%MVIC). Additionally, the joint motion was simultaneously measured using an optical motion capture system. The mean %MVIC differed among LOCOBOT exercises, especially in ankle joint muscles. The ankle joint was primarily used for robot control. The mean %MVIC of the 8-turn exercise was equivalent to that of walking in the tibialis anterior, and the ankle plantar flexors were significantly higher than those in the sit-to-stand motion. Participants control the robot by ankle strategy. This robot exercise can efficiently train the ankle joint muscles, which would improve ankle joint stability

    Data for agreement

    No full text
    Data for agreement between Wii balance board and laboratory graded force plate

    Leg Muscle Activity and Joint Motion during Balance Exercise Using a Newly Developed Weight-Shifting-Based Robot Control System

    No full text
    A novel and fun exercise robot (LOCOBOT) was developed to improve balance ability. This system can control a spherical robot on a floor by changing the center of pressure (COP) based on weight-shifting on a board. The present study evaluated leg muscle activity and joint motion during LOCOBOT exercise and compared the muscle activity with walking and sit-to-stand movement. This study included 10 healthy male adults (age: 23.0 ± 0.9 years) and examined basic LOCOBOT exercises (front–back, left–right, 8-turn, and bowling). Electromyography during each exercise recorded 13 right leg muscle activities. Muscle activity was represented as the percentage maximal voluntary isometric contraction (%MVIC). Additionally, the joint motion was simultaneously measured using an optical motion capture system. The mean %MVIC differed among LOCOBOT exercises, especially in ankle joint muscles. The ankle joint was primarily used for robot control. The mean %MVIC of the 8-turn exercise was equivalent to that of walking in the tibialis anterior, and the ankle plantar flexors were significantly higher than those in the sit-to-stand motion. Participants control the robot by ankle strategy. This robot exercise can efficiently train the ankle joint muscles, which would improve ankle joint stability

    Efficacy of Inertial Measurement Units in the Evaluation of Trunk and Hand Kinematics in Baseball Hitting

    No full text
    Baseball hitting is a highly dynamic activity, and advanced methods are required to accurately obtain biomechanical data. Inertial measurement units (IMUs) can capture the motion of body segments at high sampling rates both indoor and outdoor. The bat rotates around the longitudinal axis of the body; thus, trunk motion plays a key role in baseball hitting. Segmental coordination is important in transferring power to a moving ball and, therefore, useful in evaluating swing kinematics. The current study aimed to investigate the validity and reliability of IMUs with a sampling rate of 1000 Hz attached on the pelvis, thorax, and hand in assessing trunk and hand motion during baseball hitting. Results obtained using the IMU and optical motion capture system (OMCS) were compared. Angular displacements of the trunk segments and spine joint had a root mean square error of <5°. The mean absolute error of the angular velocities was ≤5%. The intra-class correlation coefficient (>0.950) had excellent reliability for trunk kinematics along the longitudinal-axis. Hand velocities at peak and impact corresponded to the values determined using the OMCS. In conclusion, IMUs with high sampling rates are effective in evaluating trunk and hand movement coordination during hitting motion

    Quantification of the sit-to-stand movement for monitoring age-related motor deterioration using the Nintendo Wii Balance Board.

    No full text
    Simple methods for quantitative evaluations of individual motor performance are crucial for the early detection of motor deterioration. Sit-to-stand movement from a chair is a mechanically demanding component of activities of daily living. Here, we developed a novel method using the ground reaction force and center of pressure measured from the Nintendo Wii Balance Board to quantify sit-to-stand movement (sit-to-stand score) and investigated the age-related change in the sit-to-stand score as a method to evaluate reduction in motor performance. The study enrolled 503 participants (mean age ± standard deviation, 51.0 ± 19.7 years; range, 20-88 years; male/female ratio, 226/277) without any known musculoskeletal conditions that limit sit-to-stand movement, which were divided into seven 10-year age groups. The participants were instructed to stand up as quickly as possible, and the sit-to-stand score was calculated as the combination of the speed and balance indices, which have a tradeoff relationship. We also performed the timed up and go test, a well-known clinical test used to evaluate an individual's mobility. There were significant differences in the sit-to-stand score and timed up and go time among age groups. The mean sit-to-stand score for 60s, 70s, and 80s were 77%, 68%, and 53% of that for the 20s, respectively. The timed up and go test confirmed the age-related decrease in mobility of the participants. In addition, the sit-to-stand score measured using the Wii Balance Board was compared with that from a laboratory-graded force plate using the Bland-Altman plot (bias = -3.1 [ms]-1, 95% limit of agreement: -11.0 to 3.9 [ms]-1). The sit-to-stand score has good inter-device reliability (intraclass correlation coefficient = 0.87). Furthermore, the test-retest reliability is substantial (intraclass correlation coefficient = 0.64). Thus, the proposed STS score will be useful to detect the early deterioration of motor performance
    corecore