294 research outputs found

    Discrepancy of Symmetric Products of Hypergraphs

    Full text link
    For a hypergraph H=(V,E){\mathcal H} = (V,{\mathcal E}), its dd--fold symmetric product is ΔdH=(Vd,{Ed∣E∈E})\Delta^d {\mathcal H} = (V^d,\{E^d |E \in {\mathcal E}\}). We give several upper and lower bounds for the cc-color discrepancy of such products. In particular, we show that the bound disc(ΔdH,2)≤disc(H,2){disc}(\Delta^d {\mathcal H},2) \le {disc}({\mathcal H},2) proven for all dd in [B. Doerr, A. Srivastav, and P. Wehr, Discrepancy of {C}artesian products of arithmetic progressions, Electron. J. Combin. 11(2004), Research Paper 5, 16 pp.] cannot be extended to more than c=2c = 2 colors. In fact, for any cc and dd such that cc does not divide d!d!, there are hypergraphs having arbitrary large discrepancy and disc(ΔdH,c)=Ωd(disc(H,c)d){disc}(\Delta^d {\mathcal H},c) = \Omega_d({disc}({\mathcal H},c)^d). Apart from constant factors (depending on cc and dd), in these cases the symmetric product behaves no better than the general direct product Hd{\mathcal H}^d, which satisfies disc(Hd,c)=Oc,d(disc(H,c)d){disc}({\mathcal H}^d,c) = O_{c,d}({disc}({\mathcal H},c)^d).Comment: 12 pages, no figure

    Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition

    Full text link
    In this paper, we consider the infinite-dimensional integration problem on weighted reproducing kernel Hilbert spaces with norms induced by an underlying function space decomposition of ANOVA-type. The weights model the relative importance of different groups of variables. We present new randomized multilevel algorithms to tackle this integration problem and prove upper bounds for their randomized error. Furthermore, we provide in this setting the first non-trivial lower error bounds for general randomized algorithms, which, in particular, may be adaptive or non-linear. These lower bounds show that our multilevel algorithms are optimal. Our analysis refines and extends the analysis provided in [F. J. Hickernell, T. M\"uller-Gronbach, B. Niu, K. Ritter, J. Complexity 26 (2010), 229-254], and our error bounds improve substantially on the error bounds presented there. As an illustrative example, we discuss the unanchored Sobolev space and employ randomized quasi-Monte Carlo multilevel algorithms based on scrambled polynomial lattice rules.Comment: 31 pages, 0 figure

    Discrepancy Bounds for Mixed Sequences

    Get PDF
    A mixed sequence is a sequence in the ss-dimensional unit cube which one obtains by concatenating a dd-dimensional low-discrepancy sequence with an s−ds-d-dimensional random sequence. We discuss some probabilistic bounds on the star discrepancy of mixed sequences
    • …
    corecore