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A common measure for the uniformity of point distributions is the star discrepancy.
Let λs denote the s-dimensional Lebesgue measure. Then the star discrepancy of a mul-
tiset P = {p1, . . . , pN} ⊂ [0, 1]s is given by

D∗
N(P ) := sup

α∈[0,1]s

∣∣∣∣∣λs([0, α))− 1

N

N∑
k=1

1[0,α)(pk)

∣∣∣∣∣ ;

here [0, α) denotes the s-dimensional axis-parallel box [0, α1) × · · · × [0, αs) and 1[0,α)

its characteristic function. For an infinite sequence p in [0, 1]s we denote by D∗
N(p) the

discrepancy of its first N points. The smallest star discrepancy of any N -point set is

D∗(N, s) := inf
P⊂[0,1]s , |P |=N

D∗
N(P ),

and the inverse of the star discrepancy is given by

N∗(ε, s) := inf{N ∈ N |D∗(N, s) ≤ ε}.

There are bounds known describing the behavior of the star discrepancy in the number
of points N and in the dimension s, see, e.g., [5, 2]. In [5] Heinrich, Novak, Wasilkowski,
and Woźniakowski proved

D∗(N, s) ≤ C
√

s/N and N∗(ε, s) ≤ dC2sε−2e, (1)

where the constant C does not depend on N , s or ε. The dependence of the inverse of
the star discrepancy on s is optimal here; this was proved by a lower bound in [5], which
was improved by Hinrichs in [6]: There exist constants c, ε0 > 0 such that

D∗(N, s) ≥ min{ε0, cs/N} and N∗(ε, s) ≥ csε−1 for all ε ∈ (0, ε0). (2)
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It is well known that the star discrepancy is closely related to the problem of numerical
integration of certain function classes. The Koksma-Hlawka inequality tells us that the
smaller the discrepancy of a multiset P , the better the worst-case error guarantee of the
corresponding quasi-Monte Carlo cubature 1

|P |
∑

p∈P f(p), see, e.g., [7].
In many problems low-discrepancy point sets outperform random sets in moderate

dimensions, but lose their effectiveness in high dimensions. For this reason researchers
studied hybrid methods which try to use advantages of both Monte Carlo and quasi-
Monte Carlo methods. One example are so-called mixed sequences used by Spanier [11]
and studied further by Ökten and his co-authors [8, 10]. Mixed sequences showed a good
performance in many numerical tests. To obtain a more objective measure for the quality
of mixed sequences, probabilistic bounds on their star discrepancy have been derived.

Let q = (qk) be a sequence in [0, 1)d (ideally with a low discrepancy), and let X = (Xk)
be a sequence of independent and uniformly distributed random variables in [0, 1)s−d. The
resulting s-dimensional sequence m = (mk) = (qk, Xk) is then called a mixed sequence.

The following probabilistic bound is due to Ökten, Tuffin, and Burago [10]:

Theorem 1. For s ∈ N, d ∈ {1, . . . , s}, and ε ∈ (0, 1] we have

P
(
D∗

N(m)−D∗
N(q) < ε

)
≥ 1− 2 exp

(
−ε2N

2

)
for N sufficiently large. (3)

In [10] the authors did not investigate how large N actually has to be or on which
parameters the required size of N really depends. For fixed q let N(q; s, ε) be the smallest
number such that (3) holds for all N ≥ N(q; s, ε). With the help of the bound (2) it was
shown in [3] that for ε < 1/64e2 we have

N(q; s, ε) >
1

64e2

s

ε
for all but finitely many s. (4)

This shows that N(q; s, ε) depends significantly on s and ε.
In the literature one can find bounds of the form

P
(
D∗

N(m)−D∗
N(q) < ε

)
≥ 1− 1

ε2

1

N
(D∗

N(q) + 1)

for the star discrepancy and and analogous bounds for the so-called G-discrepancy. As
explained in [4, 9] those results are unfortunately incorrect.

In [3] the following result was shown, which holds indeed for all values of N , without
any restrictions:

Theorem 2. For s ∈ N, d ∈ {1, . . . , s}, and ε ∈ (0, 1] we have

P
(
D∗

N(m)−D∗
N(q) < ε

)
> 1− 2 (2e)s(2ε−1 + 1)s exp

(
−ε2N

2

)
. (5)
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Let θ ∈ [0, 1). Then we have with probability strictly larger than θ

D∗
N(m) < D∗

N(q) +

√
2

N

(
s ln(ρ) + ln

(
2

1− θ

))1/2

, (6)

where ρ = ρ(N, s) := 6e(max{1 , N/(2 ln(6e)s)})1/2.

The factor 2 (2e)s(2ε−1 +1)s on the right hand side of of the estimate (5), which grows
exponentially in s, does not mean that the estimate is weak. In fact it was shown in [3]
that in any bound of the form

P
(
D∗

N(m)−D∗
N(q) ≤ ε

)
≥ 1− f(q; s, ε) exp

(
−ε2N

2

)
(7)

which holds for all N the function f(q; s, ε) has to increase at least exponentially in s for
ε sufficiently small if limN→∞D∗

N(q) = 0.
The technique to prove Theorem 2 is similar to the one used in [1] to prove bounds

on the discrepancy of the output set of a derandomized algorithm to generate samples
with relatively small star discrepancy. The essential tools are bracketing covers from [2] to
discretize the discrepancy, union bounds, and large deviation bounds of Chernoff-Hoefding
type.
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