5 research outputs found

    Oceanic long-range transport of organic additives present in plastic products: an overview

    Get PDF
    Most plastics are made of persistent synthetic polymer matrices that contain chemical additives in significant amounts. Millions of tonnes of plastics are produced every year and a significant amount of this plastic enters the marine environment, either as macro- or microplastics. In this article, an overview is given of the presence of marine plastic debris globally and its potential to reach remote locations in combination with an analysis of the oceanic long-range transport potential of organic additives present in plastic debris. The information gathered shows that leaching of hydrophobic substances from plastic is slow in the ocean, whereas more polar substances leach faster but mostly from the surface layers of the particle. Their high content used in plastic of several percent by weight allows also these chemicals to be transported over long distances without being completely depleted along the way. It is therefore likely that various types of additives reach remote locations with plastic debris. As a consequence, birds or other wildlife that ingest plastic debris are exposed to these substances, as leaching is accelerated in warm-blooded organisms and in hydrophobic fluids such as stomach oil, compared to leaching in water. Our estimates show that approximately 8 ' 100-18 ' 900 t of various organic additives are transported with buoyant plastic matrices globally with a significant portion also transported to the Arctic. For many of these chemicals, long-range transport (LRT) by plastic as a carrier is their only means of travelling over long distances without degrading, resulting in plastic debris enabling the LRT of chemicals which otherwise would not reach polar environments with unknown consequences. The transport of organic additives via plastic debris is an additional long-range transport route that should also be considered under the Stockholm Convention

    Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?

    Get PDF
    Fluoropolymers are a group of polymers within the class of per- and polyfluoroalkyl substances (PFAS). The objective of this analysis is to evaluate the evidence regarding the environmental and human health impacts of fluoropolymers throughout their life cycle(s). Production of some fluoropolymers is intimately linked to the use and emissions of legacy and novel PFAS as polymer processing aids. There are serious concerns regarding the toxicity and adverse effects of fluorinated processing aids on humans and the environment. A variety of other PFAS, including monomers and oligomers, are emitted during the production, processing, use, and end-of-life treatment of fluoropolymers. There are further concerns regarding the safe disposal of fluoropolymers and their associated products and articles at the end of their life cycle. While recycling and reuse of fluoropolymers is performed on some industrial waste, there are only limited options for their recycling from consumer articles. The evidence reviewed in this analysis does not find a scientific rationale for concluding that fluoropolymers are of low concern for environmental and human health. Given fluoropolymers’ extreme persistence; emissions associated with their production, use, and disposal; and a high likelihood for human exposure to PFAS, their production and uses should be curtailed except in cases of essential uses

    The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    Background: The NORMAN Association (https://www.norman-.network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-.network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https:// zenodo.org/communities/norman-.sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox. epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-.network.com/nds/SLE/)

    Finding essentiality feasible: common questions and misinterpretations concerning the "essential-use" concept

    Get PDF
    The essential-use concept is a tool that can guide the phase-out of per- and polyfluoroalkyl substances (PFAS) and potentially other substances of concern. This concept is a novel approach to chemicals management that determines whether using substances of concern, such as PFAS, is truly essential for a given functionality. To assess the essentiality of a particular use case, three considerations need to be addressed: (1) the function (chemical, end use and service) that the chemical provides in the use case, (2) whether the function is necessary for health and safety and critical for the functioning of society and (3) if the function is necessary, whether there are viable alternatives for the chemical for this particular use. A few illustrative examples of the three-step process are provided for use cases of PFAS. The essential-use concept takes chemicals management away from a substance-by-substance approach to a group approach. For PFAS and other substances of concern, it offers a more rapid pathway toward effective management or phase-out. Parts of the concept of essential use have already been widely applied in global treaties and international regulations and it has also been recently used by product manufacturers and retailers to phase out substances of concern from supply chains. Herein some of the common questions and misinterpretations regarding the practical application of the essential-use concept are reviewed, and answers and further clarifications are provided

    The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    No full text
    corecore