5,633 research outputs found
Premission and postmission simulation studies of the foot-controlled maneuvering unit for Skylab experiment T-020
A Skylab experiment was conducted to study the maneuvering capabilities of astronauts using a relatively simple self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. Some of the special considerations given in the definition and development of the experiment as related to the two ground-based simulators are reviewed. These simulators were used to train the test subjects and to obtain baseline data which could be used for comparison with the in-flight tests that were performed inside the Skylab orbital workshop. The results of both premission and postmission tests are discussed, and subjective comparisons of the in-flight and ground-based test conditions are presented
The foot-controlled maneuvering unit: Summary report on Skylab experiment T-020
Skylab experiment T-020 was conducted to study the maneuvering capabilities of astronauts using a relatively simple experimental self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. The final results as presented of this experiment which includes comparison of the tests performed during missions SL-3 and SL-4 of the Skylab with those performed on the simulators. Some of the results of this experiment and those of Skylab experiment M509, which employed an experimental hard-controlled maneuvering unit, are discussed in terms of the development of a possible future operational maneuvering system
Power grids vulnerability: a complex network approach
Power grids exhibit patterns of reaction to outages similar to complex
networks. Blackout sequences follow power laws, as complex systems operating
near a critical point. Here, the tolerance of electric power grids to both
accidental and malicious outages is analyzed in the framework of complex
network theory. In particular, the quantity known as efficiency is modified by
introducing a new concept of distance between nodes. As a result, a new
parameter called net-ability is proposed to evaluate the performance of power
grids. A comparison between efficiency and net-ability is provided by
estimating the vulnerability of sample networks, in terms of both the metrics.Comment: 16 pages, 3 figures. Figure 2 and table II modified. Typos corrected.
Version accepted for publication in Chao
Jet Investigations Using the Radial Moment
We define the radial moment, , for jets produced in hadron-hadron
collisions. It can be used as a tool for studying, as a function of the jet
transverse energy and pseudorapidity, radiation within the jet and the quality
of a perturbative description of the jet shape. We also discuss how
non-perturbative corrections to the jet transverse energy affect .Comment: 14 pages, LaTeX, 6 figure
Isolated Prompt Photon Production in Hadronic Final States of Annihilation
We provide complete analytic expressions for the isolated prompt photon
production cross section in annihilation reactions through one-loop
order in quantum chromodynamics (QCD) perturbation theory. Functional
dependences on the isolation cone size and isolation energy parameter
are derived. The energy dependence as well as the full angular
dependence of the cross section on are displayed, where
specifies the direction of the photon with respect to the
collision axis. We point out that conventional perturbative QCD
factorization breaks down for isolated photon production in
annihilation reactions in a specific region of phase space. We discuss the
implications of this breakdown for the extraction of fragmentation functions
from annihilation data and for computations of prompt photon
production in hadron-hadron reactions.Comment: 54 pages RevTeX plus 19 postscript figures submitted together in one
compressed fil
Color-Octet Fragmentation and the psi' Surplus at the Tevatron
The production rate of prompt 's at large transverse momentum at the
Tevatron is larger than theoretical expectations by about a factor of 30. As a
solution to this puzzle, we suggest that the dominant production
mechanism is the fragmentation of a gluon into a pair in a pointlike
color-octet S-wave state, which subsequently evolves nonperturbatively into a
plus light hadrons. The contribution to the fragmentation function from
this process is enhanced by a short-distance factor of relative
to the conventional color-singlet contribution. This may compensate for the
suppression by , where is the relative momentum of the charm quark in
the . If this is indeed the dominant production mechanism at large
, then the prompt 's that are observed at the Tevatron should
almost always be associated with a jet of light hadrons.Comment: 9 pages, LaTe
- …