21 research outputs found

    Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice

    Get PDF
    Introduction: Silk fibroin (SF) scaffolds have been shown to be a suitable substrate for tissue engineering and to improve tissue regeneration when cellularized with mesenchymal stromal cells (MSCs). We here demonstrate, for the first time, that electrospun nanofibrous SF patches, cellularized with human adipose-derived MSCs (Ad-MSCs-SF) or decellularized (D-Ad- MSCs-SF) are effective in the treatment of skin wounds, improving skin regeneration in db/db diabetic mice. Methods: The conformational and structural analyses of SF and D-Ad-MSCs-SF patches were performed by scanning electron microscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Wounds were performed by a 5mm punch biopsy tool on the mouse\u2019s back. Ad-MSCs-SF and D-Ad-MSCs-SF patches were transplanted and the efficacy of treatments was assessed by measuring the wound closure area, by histological examination and by gene expression profile. We further investigated the in vitro angiogenic properties of Ad-MSCs-SF and D-Ad-MSCs-SF patches by affecting migration of human umbilical vein endothelial cells (HUVECs), keratinocytes (KCs) and dermal fibroblasts (DFs), through the aortic ring assay and, finally, by evaluating the release of angiogenic factors. Results: We found that Ad-MSCs adhere and grow on SF, maintaining their phenotypic mesenchymal profile and differentiation capacity. Conformational and structural analyses on SF and D-Ad- MSCs-SF samples, showed that sterilization, decellularization, freezing and storing did not affect the SF structure. When grafted in wounds of diabetic mice, both Ad-MSCs-SF and DAd- MSCs-SF significantly improved tissue regeneration, reducing the wound area respectively by 40% and 35%, within three days, completing the process in around 10 days compared to 15-17 days of controls. RT2 gene profile analysis of the wounds treated with Ad- MSCs-SF and D-Ad-MSCs-SF showed an increment of genes involved in angiogenesis and matrix remodelling. Finally, Ad-MSCs-SF and D-Ad-MSCs-SF co-cultured with HUVECs, DFs and KCs, preferentially enhanced the HUVECs\u2019 migration and the release of angiogenic factors stimulating microvessel outgrowth in the aortic ring assay. Conclusions: Our results highlight for the first time that D-Ad-MSCs-SF patches are almost as effective as Ad-MSCs-SF patches in the treatment of diabetic wounds, acting through a complex mechanism that involves stimulation of angiogenesis. Our data suggest a potential use of DAd- MSCs-SF patches in chronic diabetic ulcers in humans

    Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy

    Get PDF
    BACKGROUND: Mesenchymal stromal cells may represent an ideal candidate to deliver anti-cancer drugs. In a previous study, we demonstrated that exposure of mouse bone marrow derived stromal cells to Doxorubicin led them to acquire anti-proliferative potential towards co-cultured haematopoietic stem cells (HSCs). We thus hypothesized whether freshly isolated human bone marrow Mesenchymal stem cells (hMSCs) and mature murine stromal cells (SR4987 line) primed in vitro with anti-cancer drugs and then localized near cancer cells, could inhibit proliferation. METHODS AND PRINCIPAL FINDINGS: Paclitaxel (PTX) was used to prime culture of hMSCs and SR4987. Incorporation of PTX into hMSCs was studied by using FICT-labelled-PTX and analyzed by FACS and confocal microscopy. Release of PTX in culture medium by PTX primed hMSCs (hMSCsPTX) was investigated by HPLC. Culture of Endothelial cells (ECs) and aorta ring assay were used to test the anti-angiogenic activity of hMSCsPTX and PTX primed SR4987(SR4987PTX), while anti-tumor activity was tested in vitro on the proliferation of different tumor cell lines and in vivo by co-transplanting hMSCsPTX and SR4987PTX with cancer cells in mice. Nevertheless, despite a loss of cells due to chemo-induced apoptosis, both hMSCs and SR4987 were able to rapidly incorporate PTX and could slowly release PTX in the culture medium in a time dependent manner. PTX primed cells acquired a potent anti-tumor and anti-angiogenic activity in vitro that was dose dependent, and demonstrable by using their conditioned medium or by co-culture assay. Finally, hMSCsPTX and SR4987PTX co-injected with human cancer cells (DU145 and U87MG) and mouse melanoma cells (B16) in immunodeficient and in syngenic mice significantly delayed tumor takes and reduced tumor growth. CONCLUSIONS: These data demonstrate, for the first time, that without any genetic manipulation, mesenchymal stromal cells can uptake and subsequently slowly release PTX. This may lead to potential new tools to increase efficacy of cancer therapy

    Human fetal aorta-derived vascular progenitor cells: identification and potential application in ischemic diseases

    No full text
    Vasculogenesis, the formation of blood vessels in embryonic or fetal tissue mediated by immature vascular cells (i.e., angioblasts), is poorly understood. Here we report a summary of our recent studies on the identification of a population of vascular progenitor cells (VPCs) in human fetal aorta. These undifferentiated mesenchymal cells co-express endothelial and myogenic markers (CD133+, CD34+, KDR+, desmin+) and are localized in outer layer of the aortic stroma of 11–12 weeks old human fetuses. Under stimulation with VEGF-A or PDGF-BB, VPCs give origin to a mixed population of mature endothelial and mural cells, respectively. When embedded in a three-dimensional collagen gel, VPCs organize into cohesive cellular cords that resembled mature vascular structures. The therapeutic efficacy of a small number of VPCs transplanted into ischemic limb muscle was demonstrated in immunodeficient mice. Investigation of the effect of VPCs on experimental heart ischemia and on diabetic ischemic ulcers in mice is in progress and seems to confirm their efficacy. On the whole, fetal aorta represents an important source for the investigation of phenotypic and functional features of human vascular progenitor cells

    Stem cell function, self-reneval, heterogeneity, and regenerative potential in skeletal muscle stem cells

    No full text
    Abstract: The main living element of the human body is the skeletal muscle. It is composed of myofibres and satellite cells, the adult stem cells responsible for skeletal muscle regeneration. Increasing confirmation suggests that satellite cells represent a heterogeneous population of cells with regenerative capacity and plasticity. Recent publications indicate numerous new findings in satellite and stem cells, from their developmental life and role as the main self-renewing myogenic stem cell in the adult skeletal muscle to their loss during aging. The present review is focused on skeletal muscle stem cells, including their identification, self-renewal ability, heterogeneity, and multilineage differentiation capacity. Finally, we summarize the latest developments, clinical applications and patents in regenerative medicine utilizing skeletal muscle stem cells

    Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats

    No full text
    BACKGROUND: Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. METHODS: Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso-Beattie-Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. RESULTS: Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions (P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. CONCLUSIONS: Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery

    Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats

    Get PDF
    Background: Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Methods: Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso-Beattie-Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Results: Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions (P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Conclusions: Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery

    Nanotechnology advances in brain tumours: the state of the art

    No full text
    Abstract: Primary malignant central nervous system (CNS) tumors only represent about 2% of all cancers. However, they are very often associated with high morbidity and mortality. Despite current standard-of-care therapy, such as surgery, irradiation, and chemotherapy, neither cure nor any toxic therapy against malignant CNS tumors has been developed so far. Nanotechnology may alter this situation. It offers a new promise for cancer diagnosis and treatment. This emerging technology, by developing and manufacturing materials using atomic and molecular elements, can provide a platform for the combination of diagnostics, therapeutics and delivery to the tumor, with subsequent monitoring of the response. This review focuses on recent developments in cancer nanotechnology with particular attention to nanoparticle systems, important tools for the improvement of drug delivery in brain tumor. The latest advances in both the research sector and in recent patents for cancer imaging and therapy are discussed

    Isolation and expansion of human and mouse brain microvascular endothelial cells.

    No full text
    Brain microvascular endothelial cells (BMVECs) have an important role in the constitution of the blood-brain barrier (BBB). The BBB is involved in the disease processes of a number of neurological disorders in which its permeability increases. Isolation of BMVECs could elucidate the mechanism involved in these processes. This protocol describes how to isolate and expand human and mouse BMVECs. The procedure covers brain-tissue dissociation, digestion and cell selection. Cells are selected on the basis of time-responsive differential adhesiveness to a collagen type I-precoated surface. The protocol also describes immunophenotypic characterization, cord formation and functional assays to confirm that these cells in endothelial proliferation medium (EndoPM) have an endothelial origin. The entire technique requires 3c7 h of active time. Endothelial cell clusters are readily visible after 48 h, and expansion of BMVECs occurs over the course of 3c60 d
    corecore