358 research outputs found

    Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs.

    Get PDF
    Differences in genetic background and/or environmental exposure among individuals are expected to give rise to differences in measurable characteristics, or phenotypes. Consequently, genetic resemblance and similarities in environment should manifest as similarities in phenotypes. The metabolome reflects many of the system properties, and is therefore an important part of the phenotype. Nevertheless, it has not yet been examined to what extent individuals sharing part of their genome and/or environment indeed have similar metabolomes. Here we present the results of hierarchical clustering of blood plasma lipid profile data obtained by liquid chromatographymass spectrometry from 23 healthy, 18-year-old twin pairs, of which 21 pairs were monozygotic, and 8 of their siblings. For 13 monozygotic twin pairs, within-pair similarities in relative concentrations of the detected lipids were indeed larger than the similarities with any other study participant. We demonstrate such high coclustering to be unexpected on basis of chance. The similarities between dizygotic twins and between nontwin siblings, as well as between nonfamilial participants, were less pronounced. In a number of twin pairs, within-pair dissimilarity of lipid profiles positively correlated with increased blood plasma concentrations of C-reactive protein in one twin. In conclusion, this study demonstrates that in healthy individuals, the individual genetic background contributes to the blood plasma lipid profile. Furthermore, lipid profiling may prove useful in monitoring health status, for example, in the context of personalized medicine. © 2008 Mary Ann Liebert, Inc. Chemicals / CAS: C-Reactive Protein, 9007-41-4; Lipid

    Folding of the apolipoprotein A1 driven by the salt concentration as a possible mechanism to improve cholesterol trapping

    Full text link
    The folding of the cholesterol trapping apolipoprotein A1 in aqueous solution at increasing ionic strength is studied using atomically detailed molecular dynamics simulations. We calculate various structural properties to characterize the conformation of the protein, such as the radius of gyration, the radial distribution function and the end to end distance. Additionally we report information using tools specifically tailored for the characterization of proteins, such as the mean smallest distance matrix and the Ramachandran plot. We find that two qualitatively different configurations of this protein are preferred, one where the protein is extended, and one where it forms loops or closed structures. It is argued that the latter promote the association of the protein with cholesterol and other fatty acids.Comment: 14 pages, 6 figures. To appear in "Selected Topics of Computational and Experimental Fluid Mechanics", Springer, J. Klapp, G. Ru\'iz, A. Medina, A. L\'opez & L. Di G. Sigalotti (eds.), 201

    Effects of Deletion of Macrophage ABCA7 on Lipid Metabolism and the Development of Atherosclerosis in the Presence and Absence of ABCA1

    Get PDF
    ABCA7, a close relative of ABCA1 which facilitates cholesterol efflux to lipid-poor apoproteins, has been implicated in macrophage lipid efflux and clearance of apoptotic cells in in vitro studies. In the current study, we investigated the in vivo effects of macrophage ABCA7 deficiency on lipid metabolism and atherosclerosis. Chimeras with dysfunctional ABCA7 in macrophages and other blood cells were generated by transplantation of bone marrow from ABCA7 knockout (KO) mice into irradiated low-density lipoprotein receptor (LDLr) KO mice. Unexpectedly, macrophage ABCA7 deficiency did not significantly affect atherosclerosis susceptibility of LDLr KO mice after 10 weeks Western-type diet feeding. However, ABCA7 deficiency was associated with 2-fold (p<0.05) higher macrophage ABCA1 mRNA expression levels. Combined disruption of ABCA1 and ABCA7 in bone-marrow-derived cells increased atherosclerotic lesion development (1.5-fold (p>0.05) as compared to wild type transplanted mice. However, single deletion of ABCA1 had a similar effect (1.8-fold, p<0.05). Macrophage foam cell accumulation in the peritoneal cavity was reduced in ABCA1/ABCA7 dKO transplanted animals as compared to single ABCA1 KO transplanted mice, which was associated with increased ABCG1 expression. Interestingly, spleens of ABCA1/ABCA7 double KO transplanted mice were significantly larger as compared to the other 3 groups and showed massive macrophage lipid accumulation, a reduction in CD3+ T-cells, and increased expression of key regulators of erythropoiesis. In conclusion, deletion of ABCA7 in bone marrow-derived cells does not affect atherogenesis in the arterial wall neither in the absence or presence of ABCA1. Interestingly, combined deletion of bone marrow ABCA1 and ABCA7 causes severe splenomegaly associated with cellular lipid accumulation, a reduction in splenic CD3+ T cells, and induced markers of erythropoeisis. Our data indicate that ABCA7 may play a role in T cell proliferation and erythropoeisis in spleen
    corecore