1,132 research outputs found

    Low energy particle composition

    Get PDF
    The energy spectra and composition of the steady or 'quiet-time' particle flux, whose origin is unknown was studied. Particles and photons which are associated with solar flares or active regions on the sun were also studied. Various detection techniques used to measure the composition and energy spectra of low energy particles are discussed. Graphs of elemental abundance and energy spectra are given

    A versatile detector system to measure the change states, mass compositions and energy spectra of interplanetary and magnetosphere ions

    Get PDF
    An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth

    Compositions of energetic particle populations in interplanetary space

    Get PDF
    Observations of helium and heavier particles with energies below about 10 to 20 MeV/nucleon are discussed with emphasis on the composition of solar flare particles, corotating energetic particle streams, and the anomalous cosmic ray component. Future advances expected from results obtained from ISEE -3, Voyager, and the international solar polar spacecraft are reviewed

    Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations

    Full text link
    By reevaluating a 13-month stretch of Ulysses SWICS H pickup ion measurements near 5 AU close to the ecliptic right after the previous solar minimum, this paper presents a determination of the neutral interstellar H density at the solar wind termination shock and implications for the density and ionization degree of hydrogen in the LIC. The density of neutral interstellar hydrogen at the termination shock was determined from the local pickup ion production rate as obtained close to the cut-off in the distribution function at aphelion of Ulysses. As shown in an analytical treatment for the upwind axis and through kinetic modeling of the pickup ion production rate at the observer location, with variations in the ionization rate, radiation pressure, and the modeling of the particle behavior, this analysis turns out to be very robust against uncertainties in these parameters and the modeling. Analysis using current heliospheric parameters yields the H density at the termination shock equal to 0.087±0.0220.087\pm0.022 cm3^{-3}, including observational and modeling uncertainties.Comment: Re-edited version, density revised downward due to data re-processing, accepted by A&

    The Pickup Ion Composition Spectrometer

    Full text link
    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time‐of‐flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large‐gap time‐of‐flight–energy sensor with a −100 kV high‐voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid‐state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.Key PointsAddresses several measurement challenges for in situ measurement of pickup ionsEnergy‐per‐charge filtering with minimal voltage stepping; 100 keV/e post accelerationEnables measurements of heavy pickup ion isotopes, solar deuterium abundancePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133602/1/jgra52700.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133602/2/jgra52700_am.pd

    Survey of He(+)/He(2+) abundance ratios in energetic particle events

    Get PDF
    The helium charge distribution in the energy range 0.4 to 0.62 MeV/nucleon in energetic particle events was studied. An average He+/He2+ ratio of 0.12 + or - 0.04 with ratios exceeding 0.3 for 41 out of 420 days events richest in He+ and no significant differences of the proton energy spectra, and the abundance of helium relative to protons and heavy ions for He+ rich events (He+/He2+ 0.3) and for events with He+/He2+ 0.3, respectively. It is also found that He+ rich events are predominantly low in energetic particle intensity

    Time-of-flight technique for particle identification at energies from 2 to 400 keV/nucleon

    Get PDF
    The time of flight technique for particle identification was extended to 2 keV/nucleon and the size of the start-time detector was reduced considerably by the use of carbon foils of few micrograms/cm square in thickness combined with microchannel plates for detecting secondary electrons. Time of flight telescopes incorporating this start-time device were used to measure the stopping power of a number of low energy heavy ions in thin carbon foils and the charge states of these ions emerging from such foils. Applications for the detection and identification of low energy interplanetary and magnetospheric particles are suggested

    Observed distribution functions of H, He, C, O, and Fe in corotating energetic particle streams: Implications for interplanetary acceleration and propagation

    Get PDF
    Distribution functions for H, He, C, O, and Fe derived from our IMP 8 measurements of approximately 0.15 to approximately 8 MeV/nucleon particles in three corotating streams observed near earth are shown to have a simple exponential dependence on the particle speed. The e-folding speed, v sub o, is typically 0.01c, is found to be the same for the distribution functions of all elements examined, and varies little from one corotating event to the next. The relative abundances of energetic particles in these events resemble most closely the solar coronal composition and, thus, presumably that of the solar wind. These results may imply that the acceleration of these particles, which occurs in corotating interaction regions at several AU from the sun, is by a statistical process

    Carbon-poor solar flare events

    Get PDF
    Energetic particle flux enhancements over the period October 1973 - December 1977 were surveyed using ULET sensor on the IMP-8 spacecraft. During the four year period the most extreme periods of Fe enrichment compared to oxygen were during solar flare events in February 1974 and May 1974. In these same events, the carbon abundance with respect to oxygen was significantly depleted when compared with a value C:0 is approximately 0.45:1 for typical solar flares. These observations, taken together with previously reported He-3 enrichment in these events, give strong evidence for the importance of a wave-particle interaction in the pre-injection heating of the ambient matter
    corecore