251 research outputs found

    Lost or Fond? Effects of Nostalgia on Sad Mood Recovery Vary by Attachment Insecurity

    Get PDF
    Nostalgia involves a fond recollection of people and events lost to time. Growing evidence indicates that nostalgia may ameliorate negative affective states such as loneliness and boredom. However, the effect of nostalgia on sadness is unknown, and there is little research on how social connectedness might impact nostalgia\u27s effects. Grounded in a theoretical framework whereby people with lower levels of attachment insecurity benefit more from nostalgia, we exposed participants to a mortality-related sad mood and then randomly assigned them to reflect on a nostalgic or an ordinary event memory. We examined changes in mood and electrodermal activity (EDA) and found that nostalgic versus ordinary event memories led to a blunted recovery from sad mood, but that this effect was moderated by degree of attachment insecurity, such that participants with low insecurity benefited from nostalgia whereas people with high insecurity did not. These findings suggest that nostalgia\u27s benefits may be tied to the degree of confidence one has in one\u27s social relationships

    Efficacy and Safety of Ciprofloxacin for Prophylaxis of Polyomavirus BK Virus–Associated Hemorrhagic Cystitis in Allogeneic Hematopoietic Stem Cell Transplantation Recipients

    Get PDF
    Polyoma virus BK–induced hemorrhagic cystitis is an important cause of morbidity after hematopoietic stem cell transplantation (HSCT). Fluoroquinolones have been shown in vitro to inhibit BK viral replication by direct inhibition of the BK-encoded DNA gyrase. We hypothesized that extended prophylaxis with ciprofloxacin may decrease the incidence of severe (grades 3 and 4) BK virus–associated hemorrhagic cystitis (sBKHC) after HSCT. We retrospectively collected patient and transplant data, as well as incidence of sBKHC, for all consecutive patients undergoing allogeneic HSCT between June 2006 and August 2010 at our institution. Prophylaxis for sBKHC with ciprofloxacin 500 mg orally twice daily from day 0 until day 60 had been instituted in March 2009, delimiting a group receiving ciprofloxacin prophylaxis (CP) or no prophylaxis (NP). We compared the cumulative incidence of sBKHC in CP and NP, including death in absence of sBKHC as a competing risk. Ninety-two consecutive patients were included in the analysis, 44 in CP and 48 in NP. Median age of patients was 50 years (range: 19-70), and 47% received a myeloablative conditioning regimen. The cumulative incidence of sBKHC was significantly reduced in CP (2.6% versus 20.9%, P = .01). Multivariate Cox regression analysis revealed that assignment to CP and concomitant acute graft-versus-host disease (GVHD) were the only factors independently associated with the occurrence of sBKHC. Patients in CP did not experience a higher risk of Clostridium difficile diarrhea and were less likely to develop episodes of bacteremia. Ciprofloxacin prophylaxis appears safe and effective in reducing the incidence of severe BKHC after allogeneic HSCT

    Diagnosis of Kawasaki disease using a minimal whole blood gene expression signature

    Get PDF
    Importance There is no diagnostic test for Kawasaki disease (KD). Diagnosis is based on clinical features shared with other febrile conditions, frequently resulting in delayed or missed treatment and an increased risk of coronary artery aneurysms. Objective To identify a whole blood gene expression signature that distinguishes children with KD in the first week of illness from other febrile conditions. Design Case-control discovery study groups comprising training, test, and validation groups of children with KD or comparator febrile illness. Setting Hospitals in the UK, Spain, Netherlands and USA. Participants The training and test discovery group comprised 404 children with infectious and inflammatory conditions (78 KD, 84 other inflammatory diseases, 242 bacterial or viral infections) and 55 healthy controls. The independent validation group included 130 febrile children and 102 KD patients, including 72 in the first 7 days of illness. Exposures Whole blood gene expression was evaluated using microarrays, and minimal transcript sets distinguishing KD were identified using a novel variable selection method (Parallel Deterministic Model Search). Main outcomes and measures The ability of transcript signatures - implemented as Disease Risk Scores - to discriminate KD cases from controls, was assessed by Area Under the Curve (AUC), sensitivity, and specificity at the optimal cut-point according to Youden’s index. Results A 13-transcript signature identified in the discovery training set distinguished KD from other infectious and inflammatory conditions in the discovery test set with AUC, sensitivity, and specificity (95% confidence intervals (CI)) of 96.2% (92.5-99.9), 81.7% (60.0-94.8), and 92.1% (84.0-97.0), respectively. In the validation set, the signature distinguished KD from febrile controls with AUC, sensitivity, and specificity (95% CI) of 94.6% (91.3-98.0), 85.9% (76.8-92.6), and 89.1% (83.0-93.7) respectively. The signature was applied to clinically defined categories of Definite, Highly Probable and Possible KD resulting in AUCs of 98.1%, 96.3% and 70.0% respectively, mirroring clinical certainty. Conclusions and relevance A 13-transcript blood gene expression signature distinguished KD from other febrile conditions. Diagnostic accuracy increased with certainty of clinical diagnosis. A test incorporating the 13-transcript Disease Risk Score may enable earlier diagnosis and treatment of KD, and reduce inappropriate treatment in those with other diagnoses

    Pathoadaptive mutations of Escherichia coli K1 in experimental neonatal systemic infection

    Get PDF
    Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation

    Hospitalisation with Infection, Asthma and Allergy in Kawasaki Disease Patients and Their Families: Genealogical Analysis Using Linked Population Data

    Get PDF
    Background: Kawasaki disease results from an abnormal immunological response to one or more infectious triggers. We hypothesised that heritable differences in immune responses in Kawasaki disease-affected children and their families would result in different epidemiological patterns of other immune-related conditions. We investigated whether hospitalisation for infection and asthma/allergy were different in Kawasaki disease-affected children and their relatives. Methods/Major Findings: We used Western Australian population-linked health data from live births (1970-2006) to compare patterns of hospital admissions in Kawasaki disease cases, age- and sex-matched controls, and their relatives. There were 295 Kawasaki disease cases and 598 age- and sex-matched controls, with 1,636 and 3,780 relatives, respectively. Compared to controls, cases were more likely to have been admitted at least once with an infection (cases, 150 admissions (50.8%) vs controls, 210 admissions (35.1%); odds ratio (OR) = 1.9, 95% confidence interval (CI) 1.4-2.6, P = 7.2×10-6), and with asthma/allergy (cases, 49 admissions (16.6%) vs controls, 42 admissions (7.0%); OR = 2.6, 95% CI 1.7-4.2, P = 1.3×10-5). Cases also had more admissions per person with infection (cases, median 2 admissions, 95% CI 1-5, vs controls, median 1 admission, 95% CI 1-4, P = 1.09×10-5). The risk of admission with infection was higher in the first degree relatives of Kawasaki disease cases compared to those of controls, but the differences were not significant. Conclusion: Differences in the immune phenotype of children who develop Kawasaki disease may influence the severity of other immune-related conditions, with some similar patterns observed in relatives. These data suggest the influence of shared heritable factors in these families

    Systems Biology: A Therapeutic Target for Tumor Therapy

    Get PDF
    Tumor-related activities that seem to be operationally induced by the division of function, such as inflammation, neoangiogenesis, Warburg effect, immune response, extracellular matrix remodeling, cell proliferation rate, apoptosis, coagulation effects, present itself from a systems perspective as an enhancement of complexity. We hypothesized, that tumor systems-directed therapies might have the capability to use aggregated action effects, as adjustable sizes to therapeutically modulate the tumor systems’ stability, homeostasis, and robustness. We performed a retrospective analysis of recently published data on 224 patients with advanced and heavily pre-treated (10% to 63%) vascular sarcoma, melanoma, renal clear cell, cholangiocellular, carcinoma, hormone-refractory prostate cancer, and multivisceral Langerhans’ cell histiocytosis enrolled in nine multi-center phase II trials (11 centers). Each patient received a multi-targeted systems-directed therapy that consisted of metronomic low-dose chemotherapy, a COX-2 inhibitor, combined with one or two transcription modulators, pioglitazone +/− dexamethasone or IFN-alpha. These treatment schedules may attenuate the metastatic potential, tumor-associated inflammation, may exert site-specific activities, and induce long-term disease stabilization followed by prolonged objective response (3% to 48%) despite poor monoactivity of the respective drugs. Progression-free survival data are comparable with those of reductionist-designed standard first-line therapies. The differential response patterns indicate the therapies’ systems biological activity. Understanding systems biology as adjustable size may break through the barrier of complex tumor-stroma-interactions in a therapeutically relevant way: Comparatively high efficacy at moderate toxicity. Structured systems-directed therapies in metastatic cancer may get a source for detecting the topology of tumor-associated complex aggregated action effects as adjustable sizes available for targeted biomodulatory therapies

    Characterizing the pathotype of neonatal meningitis causing <i>Escherichia coli</i> (NMEC)

    Get PDF
    Background Neonatal meningitis-causing Escherichia coli (NMEC) is the predominant Gram-negative bacterial pathogen associated with meningitis in newborn infants. High levels of heterogeneity and diversity have been observed in the repertoire of virulence traits and other characteristics among strains of NMEC making it difficult to define the NMEC pathotype. The objective of the present study was to identify genotypic and phenotypic characteristics of NMEC that can be used to distinguish them from commensal E. coli. Methods A total of 53 isolates of NMEC obtained from neonates with meningitis and 48 isolates of fecal E. coli obtained from healthy individuals (HFEC) were comparatively evaluated using five phenotypic (serotyping, serum bactericidal assay, biofilm assay, antimicorbial susceptibility testing, and in vitro cell invasion assay) and three genotypic (phylogrouping, virulence genotyping, and pulsed-field gel electrophoresis) methods. Results A majority (67.92 %) of NMEC belonged to B2 phylogenetic group whereas 59 % of HFEC belonged to groups A and D. Serotyping revealed that the most common O and H types present in NMEC tested were O1 (15 %), O8 (11.3 %), O18 (13.2 %), and H7 (25.3 %). In contrast, none of the HFEC tested belonged to O1 or O18 serogroups. The most common serogroup identified in HFEC was O8 (6.25 %). The virulence genotyping reflected that more than 70 % of NMEC carried kpsII, K1, neuC, iucC, sitA, and vat genes with only less than 27 % of HFEC possessing these genes. All NMEC and 79 % of HFEC tested were able to invade human cerebral microvascular endothelial cells. No statistically significant difference was observed in the serum resistance phenotype between NMEC and HFEC. The NMEC strains demonstrated a greater ability to form biofilms in Luria Bertani broth medium than did HFEC (79.2 % vs 39.9 %). Conclusion The results of our study demonstrated that virulence genotyping and phylogrouping may assist in defining the potential NMEC pathotype
    • 

    corecore