350 research outputs found

    Potential of Augmented Reality for Intelligent Transportation Systems

    Full text link
    Rapid advances in wireless communication technologies coupled with ongoing massive development in vehicular networking standards and innovations in computing, sensing, and analytics have paved the way for intelligent transportation systems (ITS) to develop rapidly in the near future. ITS provides a complete solution for the efficient and intelligent management of real-time traffic, wherein sensory data is collected from within the vehicles (i.e., via their onboard units) as well as data exchanged between the vehicles, between the vehicles and their supporting roadside infrastructure/network, among the vehicles and vulnerable pedestrians, subsequently paving the way for the realization of the futuristic Internet of Vehicles. The traditional intent of an ITS system is to detect, monitor, control, and subsequently reduce traffic congestion based on a real-time analysis of the data pertinent to certain patterns of the road traffic, including traffic density at a geographical area of interest, precise velocity of vehicles, current and predicted travelling trajectories and times, etc. However, merely relying on an ITS framework is not an optimal solution. In case of dense traffic environments, where communication broadcasts from hundreds of thousands of vehicles could potentially choke the entire network (and so could lead to fatal accidents in the case of autonomous vehicles that depend on reliable communications for their operational safety), a fall back to the traditional decentralized vehicular ad hoc network (VANET) approach becomes necessary. It is therefore of critical importance to enhance the situational awareness of vehicular drivers so as to enable them to make quick but well-founded manual decisions in such safety-critical situations.Comment: In: Lee N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham, 201

    Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus

    Get PDF
    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its microbiota. Our data suggest the presence of a sponge-specific lineage of Pseudovibrio. The reduction in genome size and the loss of some systems potentially used to successfully enter the host, leads to the hypothesis that P axinellae strain AD2 may be a lineage that presents an ancient association with the host and that may be vertically transmitted to the progeny

    Phylogeny-aware identification and correction of taxonomically mislabeled sequences

    No full text
    Molecular sequences in public databases are mostly annotated by the submitting authors without further validation. This procedure can generate erroneous taxonomic sequence labels. Mislabeled sequences are hard to identify, and they can induce downstream errors because new sequences are typically annotated using existing ones. Furthermore, taxonomic mislabelings in reference sequence databases can bias metagenetic studies which rely on the taxonomy. Despite significant efforts to improve the quality of taxonomic annotations, the curation rate is low because of the labor-intensive manual curation process. Here, we present SATIVA, a phylogeny-aware method to automatically identify taxonomically mislabeled sequences ('mislabels') using statistical models of evolution. We use the Evolutionary Placement Algorithm (EPA) to detect and score sequences whose taxonomic annotation is not supported by the underlying phylogenetic signal, and automatically propose a corrected taxonomic classification for those. Using simulated data, we show that our method attains high accuracy for identification (96.9% sensitivity/91.7% precision) as well as correction (94.9% sensitivity/89.9% precision) of mislabels. Furthermore, an analysis of four widely used microbial 16S reference databases (Greengenes, LTP, RDP and SILVA) indicates that they currently contain between 0.2% and 2.5% mislabels. Finally, we use SATIVA to perform an in-depth evaluation of alternative taxonomies for Cyanobacteria

    Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. nov., Lacipirellula limnantheis sp. nov. and Urbifossiella limnaea gen. nov., sp. nov. belonging to the phylum Planctomycetes

    Get PDF
    Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes

    Adventitial transplantation of blood outgrowth endothelial cells in porcine haemodialysis grafts alleviates hypoxia and decreases neointimal proliferation through a matrix metalloproteinase-9-mediated pathway—a pilot study

    Get PDF
    Purpose. We hypothesized that adventitial transplantation of blood outgrowth endothelial cells (BOEC) to the vein-to-graft anastomosis of polytetrafluoroethylene grafts will reduce neointimal hyperplasia by reducing hypoxia inducible factor-1α (HIF-1α), by increasing angiogenesis in a porcine model of chronic renal insufficiency with haemodialysis polytetrafluoroethylene grafts. Because matrix metalloproteinases (MMPs) have been shown to be involved with angiogenesis, the expression of MMPs and their inhibitors was determined

    Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases

    Get PDF
    The purpose of this study was to determine the image quality and diagnostic accuracy of three-dimensional (3D) unenhanced steady state free precession (SSFP) magnetic resonance angiography (MRA) for the evaluation of thoracic aortic diseases. Fifty consecutive patients with known or suspected thoracic aortic disease underwent free-breathing ECG-gated unenhanced SSFP MRA with non-selective radiofrequency excitation and contrast-enhanced (CE) MRA of the thorax at 1.5 T. Two readers independently evaluated the two datasets for image quality in the aortic root, ascending aorta, aortic arch, descending aorta, and origins of supra-aortic arteries, and for abnormal findings. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined for both datasets. Sensitivity, specificity, and diagnostic accuracy of unenhanced SSFP MRA for the diagnosis of aortic abnormalities were determined. Abnormal aortic findings, including aneurysm (n = 47), coarctation (n = 14), dissection (n = 12), aortic graft (n = 6), intramural hematoma (n = 11), mural thrombus in the aortic arch (n = 1), and penetrating aortic ulcer (n = 9), were confidently detected on both datasets. Sensitivity, specificity, and diagnostic accuracy of SSFP MRA for the detection of aortic disease were 100% with CE-MRA serving as a reference standard. Image quality of the aortic root was significantly higher on SSFP MRA (P < 0.001) with no significant difference for other aortic segments (P > 0.05). SNR and CNR values were higher for all segments on SSFP MRA (P < 0.01). Our results suggest that free-breathing navigator-gated 3D SSFP MRA with non-selective radiofrequency excitation is a promising technique that provides high image quality and diagnostic accuracy for the assessment of thoracic aortic disease without the need for intravenous contrast material

    The transcription factor Spores Absent A is a PKA dependent inducer of Dictyostelium sporulation

    Get PDF
    Abstract Sporulation in Dictyostelium fruiting bodies evolved from amoebozoan encystation with both being induced by cAMP acting on PKA, but with downstream components still being unknown. Using tagged mutagenesis to find missing pathway components, we identified a sporeless mutant defective in a nuclear protein, SpaA. Expression of prespore genes was strongly reduced in spaA- cells, while expression of many spore stage genes was absent. Chromatin immunoprecipitation (ChIP) of a SpaA-YFP gene fusion showed that (pre)spore gene promoters bind directly to SpaA, identifying SpaA as a transcriptional regulator. SpaA dependent spore gene expression required PKA in vivo and was stimulated in vitro by the membrane-permeant PKA agonist 8Br-cAMP. The PKA agonist also promoted SpaA binding to (pre)spore promoters, placing SpaA downstream of PKA. Sequencing of SpaA-YFP ChIPed DNA fragments revealed that SpaA binds at least 117 (pre)spore promoters, including those of other transcription factors that activate some spore genes. These factors are not in turn required for spaA expression, identifying SpaA as the major trancriptional inducer of sporulation
    corecore