185 research outputs found

    Electric Vehicle Procurement Decisions in Fleets : Results of a Case Study in South-Western Germany

    Get PDF
    In order to increase the market share of electric vehicles (EV) in Germany, further insights on actors and structures of EV specific procurement decisions for fleets are necessary. Our analysis focuses on vehicles registered by companies/organizations as they dominate new vehicle registrations in Germany. The following question is examined empirically: Which departments influence EV procurement decisions in small and medium-sized enterprises (SME), in large-scale enterprises (LSE) and in public organizations (PO) and what are the differences compared to these departments' influences on internal combustion engine vehicles (ICEV) procurement decisions? Our results show that EV procurement decisions of organizations in South-West Germany are decisively influenced by upper management levels and partly by organizations' fleet management departments. In small and medium-sized enterprises sales- and public relations departments have a major influence on EV procurement decisions. These findings are important for stakeholders interested in selling EVs or in designing policies that are more effective in influencing organizations' decision making concerning future EV procurement decisions

    Friedreich ataxia patient tissues exhibit increased 5-hydroxymethylcytosine modification and decreased CTCF binding at the FXN locus

    Get PDF
    © 2013 Al-Mahdawi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, which induces epigenetic changes and FXN gene silencing. Bisulfite sequencing studies have identified 5-methylcytosine (5 mC) DNA methylation as one of the epigenetic changes that may be involved in this process. However, analysis of samples by bisulfite sequencing is a time-consuming procedure. In addition, it has recently been shown that 5-hydroxymethylcytosine (5 hmC) is also present in mammalian DNA, and bisulfite sequencing cannot distinguish between 5 hmC and 5 mC.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 242193/EFACTS (CS), the Wellcome Trust [089757] (SA) and Ataxia UK (RMP) to MAP

    5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development

    Get PDF
    5-hydroxymethyl-cytosine (5-hmc) is a cytosine modification that is relatively abundant in mammalian pre-implantation embryos and embryonic stem cells (Esc) derived from mammalian blastocysts. Recent observations imply that both 5-hmc and Tet1/2/3 proteins, catalyzing the conversion of 5-methyl-cytosine to 5-hmc, may play an important role in self renewal and differentiation of Escs. here we assessed the distribution of 5-hmc in zebrafish and chick embryos and found that, unlike in mammals, 5-hmc is immunochemically undetectable in these systems before the onset of organogenesis. In addition, Tet1/2/3 transcripts are either low or undetectable at corresponding stages of zebrafish development. however, 5-hmc is enriched in later zebrafish and chick embryos and exhibits tissue-specific distribution in adult zebrafish. Our findings show that 5-hmc enrichment of non-committed cells is not a universal feature of vertebrate development and give insights both into evolution of embryonic pluripotency and the potential role of 5-hmc in its regulation

    5-Formylcytosine can be a stable DNA modification in mammals.

    Get PDF
    5-Formylcytosine (5fC) is a rare base found in mammalian DNA and thought to be involved in active DNA demethylation. Here, we show that developmental dynamics of 5fC levels in mouse DNA differ from those of 5-hydroxymethylcytosine (5hmC), and using stable isotope labeling in vivo, we show that 5fC can be a stable DNA modification. These results suggest that 5fC has functional roles in DNA that go beyond being a demethylation intermediate.This work was supported by the Cancer Research UK (C14303/A17197, S.B.), The Wellcome Trust (WT099232, S.B.; WT095645/Z/11/Z, W.R.) and the BBSRC (BB/K010867/1, W.R.).This is the accepted manuscript. It is currently embargoed pending publication

    5-Hydroxymethylcytosine is a predominantly stable DNA modification.

    Get PDF
    5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.We would like to acknowledge the CRUK CI Flow Cytometry and Histopathology/ISH core facilities for their contributions, David Oxley, Clive d’Santos and Donna Michelle-Smith for their support with mass spectrometry, Xiangang Zou for his help with mES cells and David Tannahill for critical reading of the manuscript. This work was funded by Cancer Research UK (all authors) and the Wellcome Trust Senior Investigator Award (S.B.).This is the accepted manuscript. The final version is available from Nature Chemistry at http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2064.html

    Recognition of 5-Hydroxymethylcytosine by the Uhrf1 SRA Domain

    Get PDF
    Recent discovery of 5-hydroxymethylcytosine (5hmC) in genomic DNA raises the question how this sixth base is recognized by cellular proteins. In contrast to the methyl-CpG binding domain (MBD) of MeCP2, we found that the SRA domain of Uhrf1, an essential factor in DNA maintenance methylation, binds 5hmC and 5-methylcytosine containing substrates with similar affinity. Based on the co-crystal structure, we performed molecular dynamics simulations of the SRA:DNA complex with the flipped cytosine base carrying either of these epigenetic modifications. Our data indicate that the SRA binding pocket can accommodate 5hmC and stabilizes the flipped base by hydrogen bond formation with the hydroxyl group

    Effect of cadmium on cytosine hydroxymethylation in gastropod hepatopancreas

    Get PDF
    5-Hydroxymethylcytosine (5hmC) is an important, yet poorly understood epigenetic DNA modification, especially in invertebrates. Aberrant genome-wide 5hmC levels have been associated with cadmium (Cd) exposure in humans, but such information is lacking for invertebrate bioindicators. Here, we aimed to determine whether this epigenetic mark is present in DNA of the hepatopancreas of the land snail Cantareus aspersus and is responsive to Cd exposure. Adult snails were reared under laboratory conditions and exposed to graded amounts of dietary cadmium for 14 days. Weight gain was used as a sublethal endpoint, whereas survival as a lethal endpoint. Our results are the first to provide evidence for the presence of 5hmC in DNA of terrestrial mollusks; 5hmC levels are generally low with the measured values falling below 0.03%. This is also the first study to investigate the interplay of Cd with DNA hydroxymethylation levels in a non-human animal study system. Cadmium retention in the hepatopancreas of C. aspersus increased from a dietary Cd dose of 1 milligram per kilogram dry weight (mg/kg d. wt). For the same treatment, we identified the only significant elevation in percentage of samples with detectable 5hmC levels despite the lack of significant mortalities and changes in weight gain among treatment groups. These findings indicate that 5hmC is an epigenetic mark that may be responsive to Cd exposure, thereby opening a new aspect to invertebrate environmental epigenetics

    Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development

    Get PDF
    Methylation of cytosine is a DNA modification associated with gene repression. Recently, a novel cytosine modification, 5-hydroxymethylcytosine (5-hmC) has been discovered. Here we examine 5-hmC distribution during mammalian development and in cellular systems, and show that the developmental dynamics of 5-hmC are different from those of 5-methylcytosine (5-mC); in particular 5-hmC is enriched in embryonic contexts compared to adult tissues. A detectable 5-hmC signal appears in pre-implantation development starting at the zygote stage, where the paternal genome is subjected to a genome-wide hydroxylation of 5-mC, which precisely coincides with the loss of the 5-mC signal in the paternal pronucleus. Levels of 5-hmC are high in cells of the inner cell mass in blastocysts, and the modification colocalises with nestin-expressing cell populations in mouse post-implantation embryos. Compared to other adult mammalian organs, 5-hmC is strongly enriched in bone marrow and brain, wherein high 5-hmC content is a feature of both neuronal progenitors and post-mitotic neurons. We show that high levels of 5-hmC are not only present in mouse and human embryonic stem cells (ESCs) and lost during differentiation, as has been reported previously, but also reappear during the generation of induced pluripotent stem cells; thus 5-hmC enrichment correlates with a pluripotent cell state. Our findings suggest that apart from the cells of neuronal lineages, high levels of genomic 5-hmC are an epigenetic feature of embryonic cell populations and cellular pluri- and multi-lineage potency. To our knowledge, 5-hmC represents the first epigenetic modification of DNA discovered whose enrichment is so cell-type specific
    • …
    corecore