22 research outputs found

    Recovery of distal coronary flow reserve in LAD and LCx after Y-Graft intervention assessed by transthoracic echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Y- graft (Y-G) is a graft formed by the Left Internal Mammary Artery (LIMA) connected to the Left Anterior Descending Artery (LAD) and by a free Right Internal Mammary Artery (RIMA) connected to LIMA and to a Marginal artery of Left Circumflex Artery (LCx). Aim of the work was to study the flow of this graft during a six months follow-up to assess whether the graft was able to meet the request of all the left coronary circulation, and to assess whether it could be done by evaluation of coronary flow reserve (CFR).</p> <p>Methods</p> <p>In 13 consecutive patients submitted to Y-G (13 men), CFR was measured in distal LAD and in distal LCx from 1 week after , every two months, up to six months after operation (a total of 8 tests for each patient) by means of transthoracic echocardiography (TTE) and Adenosine infusion (140 mcg/kg/min for 3-6 min). A Sequoia 256, Acuson-Siemens, was used. Contrast was used when necessary (Levovist 300 mg/ml solution at a rate of 0,5-1 ml/min). Max coronary flow diastolic velocity post-/pre-test ≥2 was considered normal CFR.</p> <p>Results</p> <p>Coronary arteriography revealed patency of both branches of Y-G after six months. Accuracy of TTE was 100% for LAD and 85% for LCx. Feasibility was 100% for LAD and 85% for LCx. CFR improved from baseline in LAD (2.21 ± 0.5 to 2.6 ± 0.5, p = 0.03) and in LCx (1.7 ± 1 to 2.12 ± 1, p = 0.05). CFR was under normal at baseline in 30% of patients <it>vs </it>8% after six months in LAD (p = 0.027), and in 69% of patients <it>vs </it>30% after six months in LCx (p = 0.066).</p> <p>Conclusion</p> <p>CFR in Y-G is sometimes reduced in both left territories postoperatively but it improves at six months follow-up. A follow-up can be done non-invasively by TTE and CFR evaluation.</p

    Impaired CK1 Delta Activity Attenuates SV40-Induced Cellular Transformation In Vitro and Mouse Mammary Carcinogenesis In Vivo

    Get PDF
    Simian virus 40 (SV40) is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP) gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T) mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA repair. Our data show that inactivating mutations in CK1δ impair SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo

    Pleiotropic Actions of Peroxisome Proliferator-Activated Receptors in Lipid Metabolism and Atherosclerosis

    No full text
    International audiencePeroxisome proliferator-activated receptors (PPARs) are nuclear receptors activated by fatty acids and derivatives. Although PPARalpha mediates the hypolipidemic action of fibrates, PPARgamma is the receptor for the antidiabetic glitazones. PPARalpha is highly expressed in tissues such as liver, muscle, kidney, and heart, where it stimulates the beta-oxidative degradation of fatty acids. PPARgamma is predominantly expressed in adipose tissues, where it promotes adipocyte differentiation and lipid storage. PPARbeta/delta is expressed in a wide range of tissues, and recent findings indicate a role for this receptor in the control of adipogenesis. Pharmacological and gene-targeting studies have demonstrated a physiological role for PPARs in lipid and lipoprotein metabolism. PPARalpha controls plasma lipid transport by acting on triglyceride and fatty acid metabolism and by modulating bile acid synthesis and catabolism in the liver. All 3 PPARs regulate macrophage cholesterol homeostasis. By enhancing cholesterol efflux, they stimulate the critical steps of the reverse cholesterol transport pathway. As such, PPARs control plasma levels of cholesterol and triglycerides, which constitute major risk factors for coronary heart disease. Furthermore, PPARalpha and PPARgamma regulate the expression of key proteins involved in all stages of atherogenesis, such as monocyte and lymphocyte recruitment to the arterial wall, foam cell formation, vascular inflammation, and thrombosis. Thus, by regulating gene transcription, PPARs modulate the onset and evolution of metabolic disorders predisposing to atherosclerosis and exert direct antiatherogenic actions at the level of the vascular wall

    Dentocraniofacial morphology of 21 patients with unilateral cleft lip and palate: a cephalometric study.

    No full text
    To assess the skeletal and dental craniofacial proportions of unilateral cleft lip and palate patients who were operated upon using the Malek technique, and compare them with a normal group to highlight the effect of surgical correction on craniofacial development during growth.Comparative StudyJournal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore