169 research outputs found

    Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions

    Get PDF
    Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere

    Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions

    Get PDF
    Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere

    Mechanism for deep crustal seismicity: Insight from modeling of deformation process at the Main Ethiopian Rift

    Get PDF
    We combine numerical modeling of lithospheric extension with analysis of seismic moment release and earthquake b-value in order to elucidate the mechanism for deep crustal seismicity and seismic swarms in the Main Ethiopian Rift (MER). We run 2-D numerical simulations of lithospheric deformation calibrated by appropriate rheology and extensional history of the MER to simulate migration of deformation from mid-Miocene border faults to ∼30 km wide zone of Pliocene to recent rift floor faults. While currently the highest strain rate is localized in a narrow zone within the rift axis, brittle strain has been accumulated in a wide region of the rift. The magnitude of deviatoric stress shows strong variation with depth. The uppermost crust deforms with maximum stress of 80 MPa, at 8–14 km depth stress sharply decreases to 10 MPa and then increases to a maximum of 160 MPa at ∼18 km depth. These two peaks at which the crust deforms with maximum stress of 80 MPa or above correspond to peaks in the seismic moment release. Correspondingly, the drop in stress at 8–14 km correlates to a low in seismic moment release. At this depth range, the crust is weaker and deformation is mainly accommodated in a ductile manner. We therefore see a good correlation between depths at which the crust is strong and elevated seismic deformation, while regions where the crust is weaker deform more aseismically. Overall, the bimodal depth distribution of seismic moment release is best explained by the rheology of the deforming crust

    Polymeric rapid prototyping for inexpensive and portable medical diagnostics

    Get PDF
    Tianchi Ma, Victoria Northrup, Andrew O. Fung, D. Moira Glerum, Christopher J. Backhouse, "Polymeric rapid prototyping for inexpensive and portable medical diagnostics", Proc. SPIE 8412, Photonics North 2012, 84120B (24 October 2012); doi: 10.1117/12.2001470. Copyright 2012, Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. https://doi.org/10.1117/12.2001470The advent of inexpensive CO2 laser systems has led to a wide range of demonstrations of microfabricated lab on chip systems built of acrylic. However, there has been little application of these systems to building microfluidics for DNA analysis. In this work we explore the use of CO2 laser systems for building microfluidics for DNA analysis and relate the artifacts of the fabrication technology to the performance of the system. We show that surface roughness that leads to significant constrictions in the separation channel provides an upper limit of the size of DNA that can be analysed. Below that upper limit, the resolution of the chip is strongly affected by the degree to which the separation channel is exposed to redeposited by-products of the ablation process. We show that by controlling these effects we are reliably able to discern two types of PCR product as a test representative of a real application. By being able to do this is in microfluidic devices the size of a postage stamp we have shown that we can now use CO2 laser systems for the development of extremely inexpensive diagnostic systems using a rapid prototyping approach.Natural Sciences and Engineering Research Council of CanadaTeledyne-DALS

    101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth

    Get PDF
    Geodynamic modelling provides a powerful tool to investigate processes in the Earth's crust, mantle, and core that are not directly observable. However, numerical models are inherently subject to the assumptions and simplifications on which they are based. In order to use and review numerical modelling studies appropriately, one needs to be aware of the limitations of geodynamic modelling as well as its advantages. Here, we present a comprehensive yet concise overview of the geodynamic modelling process applied to the solid Earth from the choice of governing equations to numerical methods, model setup, model interpretation, and the eventual communication of the model results. We highlight best practices and discuss their implementations including code verification, model validation, internal consistency checks, and software and data management. Thus, with this perspective, we encourage high-quality modelling studies, fair external interpretation, and sensible use of published work. We provide ample examples, from lithosphere and mantle dynamics specifically, and point out synergies with related fields such as seismology, tectonophysics, geology, mineral physics, planetary science, and geodesy. We clarify and consolidate terminology across geodynamics and numerical modelling to set a standard for clear communication of modelling studies. All in all, this paper presents the basics of geodynamic modelling for first-time and experienced modellers, collaborators, and reviewers from diverse backgrounds to (re)gain a solid understanding of geodynamic modelling as a whole

    Quantification of Adverse Drug Reactions Related to Drug Switches in The Netherlands

    Get PDF
    Contains fulltext : 220534.pdf (publisher's version ) (Open Access)We performed a retrospective cohort study in the Dutch patient population to identify active substances with a relatively high number of adverse drug reactions (ADRs) potentially related to drug switching. For this, we analyzed drug switches and reported ADRs related to switching between June 1, 2009, and December 31, 2016, for a selection of 20 active substances. We also compared pharmacovigilance analyses based on the absolute, switch-corrected, and user-corrected numbers of ADRs. In total, 1,348 reported ADRs and over 23.8 million drug switches were obtained from the National Health Care Institute in The Netherlands and from Lareb, which is The Netherlands Pharmacovigilance Centre. There was no correlation between the number of ADRs and the number of switches, but, on average, we found 5.7 reported ADRs per 100,000 switches. The number was relatively high for rivastigmine, levothyroxine, methylphenidate, and salbutamol, with 74.9, 50.9, 47.6, and 26.1 ADRs per 100,000 switches, respectively. When comparing analyses using the absolute number and the switch-corrected number of ADRs, we demonstrate that different active substances would be identified as having a relatively high number of ADRs, and different time periods of increased numbers of ADRs would be observed. We also demonstrate similar results when using the user-corrected number of ADRs instead of the switch-corrected number of ADRs, allowing for a more feasible approach in pharmacovigilance practice. This study demonstrates that pharmacovigilance analyses of switch-related ADRs leads to different results when the number of reported ADRs is corrected for the actual number of drug switches

    In vitro comparison of isometric and stop-test contractility parameters for the urinary bladder

    Get PDF
    Contractility parameters in the urinary bladder can be calculated from isometric contractions (no extra patient load as compared to routine cystometry) or from stop-tests (more accurate, simpler analysis). A stop-test involves a voluntarily interrupted micturition with pressure and flow measurement. In a series of measurements in vitro on pig urinary bladder strips, parameters of the first type, obtained either by analyzing isometric contractions in terms of the Hill model, or by making phase plots, were compared to parameters of the second type. A good correlation was found. Th parameter correlating best with the maximal contraction velocity of the bladder, normalized for differences in initial muscle length, as obtained from stop-test, is the isometric contraction force, which can be obtained from an isometric contraction by either of the two analysis techniques. Clinically, making phase plots seems more promising than analyzing contractions in terms of the Hill model

    Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    Get PDF
    In contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle. The present study describes the development of a method for isolating contractile single smooth muscle cells from pig urinary bladders. Contractile responses evoked by individual electrical stimulation were used as a measure of cell quality during development of the method. Responses were evaluated by measuring latency, contraction and relaxation times, as indicated by visible length changes, and stored on-line in a computer. Initial length, relative shortening and shortening speed were determined by measuring cell lengths in previously timed still video frames using a computer-controlled crosshair device. Increase of stimulus pulse duration resulted in improved responses, indicating that the observed shortening represented a physiological contractile response. Ultimately this method of evaluation was applied to two sets of cell preparations obtained by two different methods, one using only collagenase digestion, the other using mechanical manipulation as well. Both sets showed two main patterns of response to electrical stimulation: a pattern of contraction upon stimulation followed by enhanced contraction when stimulation was switched off (CK), and a pattern of contraction upon stimulation followed by relaxation when the stimulus was switched off (CR). The set of preparations containing the highest percentage of CR cells was found to be superior (i.e. greater initial length, shorter latency and contraction times, increased shortening and higher shortening speed). The method of isolation used for this set gives a high yield of contractile cells available for experimental use over a long span of time
    corecore