75 research outputs found

    Discovering Constructivism: How A Project-Oriented Activity-Based Media Production Course Effectively Employed Constructivist Teaching Principles

    Get PDF
    The author uses his experience leading a project-oriented special-topics course as a case study in constructivist teaching methods. Citing relevant literature from the education field, this paper considers why students chosen to work for course credit on a promotional video for a university program considered the project their greatest academic learning experience. The author points out that communication media education has long championed activity and project-based learning and argues that educators could benefit from a deeper understanding of how and why such methods are effective

    Integrated genomic analyses of ovarian carcinoma

    Get PDF
    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003273)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U24CA126543)National Institutes of Health (U.S.) (Grant U24CA126544)National Institutes of Health (U.S.) (Grant U24CA126546)National Institutes of Health (U.S.) (Grant U24CA126551)National Institutes of Health (U.S.) (Grant U24CA126554)National Institutes of Health (U.S.) (Grant U24CA126561)National Institutes of Health (U.S.) (Grant U24CA126563)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143731)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant R21CA135877

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Beyond the Issue of Safety

    No full text
    Book description: Engineering the Human Germline is a three-part examination of some of the most fascinating questions science has to offer, with contributions by the leading scientists and thinkers in the fields of gene therapy, human genetics, biotechnology, philosophy and ethics. Leroy Hood, Daniel Koshland, French Anderson, James Watson and Lee Silver among others outline what we really know about designing our offspring, both our abilities and the problems they present, discerning the line between fantasy and reality. A final section of short essays by lawyers, theologians, scientists and ethicists bring us a broader perspective on the core issues surrounding this debate: What would we do if this technology were safe and reliable? What are the concerns about its widespread use? How would such intervention be regulated? Would we be willing to genetically alter our own children given the possibility? Should we have this choice? --Jacket

    Credit Markets and the Propagation of Monetary Policy Shocks

    No full text
    This paper analyzes the propagation of monetary policy shocks through the creation of credit in an economy. Models of the monetary transmission mechanism typically feature responses that last for a few quarters contrary to what the empirical evidence suggests. To propagate the impact of monetary shocks over time, these models introduce adjustment costs by which agents find it optimal to change their decisions slowly. This paper presents another explanation that does not rely on any sort of adjustment costs or stickiness. In our economy, agents own assets and make occupational choices. Banks intermediate between agents demanding and supplying assets. Our interpretation is based on the way banks create credit and how the monetary authority affects the process of financial intermediation through its monetary policy. As the central bank lowers the interest rate by buying government bonds in exchange for reserves, high productive entrepreneurs are able to borrow more resources from low-productivity agents. We show that this movement of capital among agents sets in motion a response of the economy that resembles an expansionary phase of the cycle. Copyright 2007 The Ohio State University.
    • …
    corecore