33 research outputs found

    EFFECTS OF RELEASE TECHNIQUES ON PARENT-REARED WHOOPING CRANES IN THE EASTERN MIGRATORY POPULATION

    Get PDF
    Reintroduction of an Eastern Migratory Population (EMP) of whooping cranes (Grus americana) in the United States by release of captive-reared individuals began in 2001. As of 2020, the EMP has approximately 21 breeding pairs and has had limited recruitment of wild-hatched individuals, thus captive-reared juveniles continue to be released into breeding areas in Wisconsin to maintain the population. We investigated the effects of release techniques on survival, behavior, site fidelity, and conspecific associations of 42 captive-parent-reared whooping cranes released during 2013-2019 into the EMP. Individuals were monitored intensively post-release, then as a part of a long-term monitoring program, locational, behavioral, and habitat use data were collected and analyzed. Most cranes roosted in water post-release; however, we documented 4 parent-reared cranes roosting on dry land. Most cranes eventually associated with other whooping cranes; however, juveniles released near single adult cranes were less likely to associate with other whooping cranes during their first migration or winter than juveniles released near other types of whooping crane pairs or groups. Parent-reared and costume-reared whooping cranes had similar rates of survival 1 year post-release (69.0% and 64.4%, respectively). The highest risk of mortality was within the first 100 days post-release, and the leading known causes of death were predation and impact trauma due to powerline or vehicle collisions. Both costume- and parent-reared cranes had strong fidelity to release sites. We advise releasing parent-reared cranes near pairs or groups of whooping cranes and taking measures to reduce the risk of mortality during the immediate period after release (e.g., predator aversion training, marking powerlines)

    Chamber Singers, Men\u27s Ensemble and University Chorale, Requiem for the Living

    Get PDF
    KSU School of Music presents Chamber Singers, Men\u27s Ensemble and University Chorale directed by Dr. Leslie Blackwell, Director of Choral Activities and Professor of Music and Music Education.https://digitalcommons.kennesaw.edu/musicprograms/2033/thumbnail.jp

    Separating the configurational and vibrational entropy contributions in metallic glasses

    Get PDF
    Glassy materials exist in nature and play a critical role in technology, but key differences between the glass, liquid and crystalline phases are not well understood. Over several decades there has been controversy about the specific heat absorbed as a glass transforms to a liquid—does this originate from vibrational entropy or configurational entropy? Here we report direct in situ measurements of the vibrational spectra of strong and fragile metallic glasses in the glass, liquid and crystalline phases. For both types of material, the measured vibrational entropies of the glass and liquid show a tiny excess over the crystal, representing less than 5% of the total excess entropy measured with step calorimetry. These results reveal that the excess entropy of metallic glasses is almost entirely configurational in origin, consistent with the early theories of Gibbs and co-workers describing the glass transition as a purely configurational transition

    Verbal Learning and Memory Deficits across Neurological and Neuropsychiatric Disorders: Insights from an ENIGMA Mega Analysis.

    Get PDF
    Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15–90. The effects of dementia, mild cognitive impairment, Parkinson’s disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia (p \u3c 0.001), while neither depression nor ADHD showed consistent associations with VLM scores (p \u3e 0.05). Differences associated with clinical conditions were larger for longer delayed recall duration items. By comparing VLM across clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers new insights into disease management of comorbid disorders

    Verbal Learning and Memory Deficits across Neurological and Neuropsychiatric Disorders: Insights from an ENIGMA Mega Analysis.

    Get PDF
    Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15-90. The effects of dementia, mild cognitive impairment, Parkinson's disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia (p 0.05). Differences associated with clinical conditions were larger for longer delayed recall duration items. By comparing VLM across clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers new insights into disease management of comorbid disorders

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Rich Get Richer: Brain Injury Elicits Hyperconnectivity in Core Subnetworks

    No full text
    <div><p>There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the “rich club”. The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.</p></div
    corecore