104 research outputs found

    Comparisons of laboratory-based methods to calculate jump height and improvements to the field-based flight-time method

    Get PDF
    Laboratory methods that are required to calculate highly precise jump heights during experimental research have never been sufficiently compared and examined. Our first aim was to compare jumping outcome measures of the same jump, using four different methods (double integration from force plate data, rigid-body modeling from motion capture data, marker-based video tracking, and a hybrid method), separately for countermovement and squat jumps. Additionally, laboratory methods are often unsuitable for field use due to equipment or time restrictions. Therefore, our second aim was to improve an additional field-based method (flight-time method), by combining this method with an anthropometrically scaled constant. Motion capture and ground reaction forces were used to calculate jump height of twenty-four participants who performed five maximal countermovement jumps and five maximal squat jumps. Within-participant mean and standard deviation of jump height, flight distance, heel-lift, and take-off velocity were compared for each of the four methods. All four methods calculated countermovement jump height with low variability and are suitable for research applications. The double integration method had significant errors in squat jump height due to integration drift, and all other methods had low variability and are therefore suitable for research applications. Rigid-body modeling was unable to determine the position of the center of mass at take-off in both jumping movements and should not be used to calculate heel-lift or flight distance. The flight-time method was greatly improved with the addition of an anthropometrically scaled heel-lift constant, enabling this method to estimate jump height and subsequently estimate power output in the field.</p

    Effects of series elastic compliance on muscle force summation and the rate of force rise

    Get PDF
    Compliant tendons permit mechanically unfavourable fascicle dynamics during fixed-end contractions. The purpose of this study was to reduce the effective compliance of tendon and investigate how small reductions in active shortening affect twitch kinetics and contractile performance in response to a second stimulus. The series elastic element (SEE) of the human triceps surae (N=15) was effectively stiffened by applying a 55 ms rotation to the ankle, through a range of 5°, at the onset of twitch and doublet [interstimulus interval (ISI) of 80 ms] stimulation. Ultrasonography was employed to quantify lateral gastrocnemius and soleus fascicle lengths. Rotation increased twitch torque (40-75%), rate of torque development (RTD, 124-154%) and torque-time integral (TTI, 70-110%) relative to constant-length contractions at the initial and final joint positions, yet caused only modest reductions in shortening amplitude and velocity. The torque contribution of the second pulse increased when stimulation was preceded by rotation, a finding unable to be explained on the basis of fascicle length or SEE stiffness during contraction post-rotation. A further increase in torque contribution was not demonstrated, nor an increase in doublet TTI, when the second pulse was delivered during rotation and shortly after the initial pulse (ISI of 10 ms). The depressant effect of active shortening on subsequent torque generation suggests that compliant tendons, by affording large length changes, may limit torque summation. Our findings indicate that changes in tendon compliance shown to occur in response to resistance training or unloading are likely sufficient to considerably alter contractile performance, particularly maximal RTD

    Protection from muscle damage in the absence of changes in muscle mechanical behavior

    Get PDF
    Introduction: The repeated bout effect characterizes the protective adaptation after a single bout of unaccustomed eccentric exercise that induces muscle damage. Sarcomerogenesis and increased tendon compliance have been suggested as potential mechanisms for the repeated bout effect by preventing muscle fascicles from being stretched onto the descending limb of the length–tension curve (the region where sarcomere damage is thought to occur). In this study, evidence was sought for three possible mechanical changes that would support either the sarcomerogenesis or the increased tendon compliance hypotheses: a sustained rightward shift in the fascicle length–tension relationship, reduced fascicle strain amplitude, and reduced starting fascicle length. Methods: Subjects (n = 10) walked backward downhill (5 km/h, 20% incline) on a treadmill for 30 min on two occasions separated by 7 d. Kinematic data and medial gastrocnemius fascicle lengths (ultrasonography) were recorded at 10-min intervals to compare fascicle strains between bouts. Fascicle length–torque curves from supramaximal tibial nerve stimulation were constructed before, 2 h after, and 2 d after each exercise bout. Results: Maximum torque decrement and elevated muscle soreness were present after the first, but not the second, backward downhill walking bout signifying a protective repeated bout effect. There was no sustained rightward shift in the length–torque relationship between exercise bouts, nor decreases in fascicle strain amplitude or shortening of the starting fascicle length. Conclusions: Protection from a repeated bout of eccentric exercise was conferred without changes in muscle fascicle strain behavior, indicating that sarcomerogenesis and increased tendon compliance were unlikely to be responsible. As fascicle strains are relatively small in humans, we suggest that changes to connective tissue structures, such as extracellular matrix remodeling, are better able to explain the repeated bout effect observed here

    Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach

    Get PDF
    Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle

    The mechanical function of the tibialis posterior muscle and its tendon during locomotion

    Get PDF
    The tibialis posterior (TP) muscle is believed to provide mediolateral stability of the subtalar joint during the stance phase of walking as it actively lengthens to resist pronation at foot contact and then actively shortens later in stance to contribute to supination. Because of its anatomical structure of short muscle fibres and long series elastic tissue, we hypothesised that TP would be a strong candidate for energy storage and return. We investigated the potential elastic function of the TP muscle and tendon through simultaneous measurements of muscle fascicle length (ultrasound), muscle tendon unit length (musculoskeletal modelling) and muscle activation (intramuscular electromyography). In early stance, TP fascicles actively shortened as the entire muscle-tendon unit lengthened, resulting in the absorption of energy through stretch of the series elastic tissue. Energy stored in the tendinous tissue from early stance was maintained during mid-stance, although a small amount of energy may have been absorbed via minimal shortening in the series elastic elements and lengthening of TP fascicles. A significant amount of shortening occurred in both the fascicles and muscle-tendon unit in late stance, as the activation of TP decreased and power was generated. The majority of the shortening was attributable to shortening of the tendinous tissue. We conclude that the tendinous tissue of TP serves two primary functions during walking: 1) to buffer the stretch of its fascicles during early stance and 2) to enhance the efficiency of the TP through absorption and return of elastic strain energy

    Foot structure is significantly associated to subtalar joint kinetics and mechanical energetics

    Get PDF
    Introduction/aim: Foot structure has been implicated as a risk factor of numerous overuse injuries, however, the mechanism linking foot structure and the development of soft-tissue overuse injuries are not well understood. The aim of this study was to identify factors that could predict foot function during walking

    The Reliability of Foot and Ankle Bone and Joint Kinematics Measured With Biplanar Videoradiography and Manual Scientific Rotoscoping

    Get PDF
    The intricate motion of the small bones of the feet are critical for its diverse function. Accurately measuring the 3-dimensional (3D) motion of these bones has attracted much attention over the years and until recently, was limited to invasive techniques or quantification of functional segments using multi-segment foot models. Biplanar videoradiography and model-based scientific rotoscoping offers an exciting alternative that allows us to focus on the intricate motion of individual bones in the foot. However, scientific rotoscoping, the process of rotating and translating a 3D bone model so that it aligns with the captured x-ray images, is either semi- or completely manual and it is unknown how much human error affects tracking results. Thus, the aim of this study was to quantify the inter- and intra-operator reliability of manually rotoscoping in vivo bone motion of the tibia, talus, and calcaneus during running. Three-dimensional CT bone volumes and high-speed biplanar videoradiography images of the foot were acquired on six participants. The six-degree-of-freedom motions of the tibia, talus, and calcaneus were determined using a manual markerless registration algorithm. Two operators performed the tracking, and additionally, the first operator re-tracked all bones, to test for intra-operator effects. Mean RMS errors were 1.86 mm and 1.90° for intra-operator comparisons and 2.30 mm and 2.60° for inter-operator comparisons across all bones and planes. The moderate to strong similarity values indicate that tracking bones and joint kinematics between sessions and operators is reliable for running. These errors are likely acceptable for defining gross joint angles. However, this magnitude of error may limit the capacity to perform advanced analyses of joint interactions, particularly those that require precise (sub-millimeter) estimates of bone position and orientation. Optimizing the view and image quality of the biplanar videoradiography system as well as the automated tracking algorithms for rotoscoping bones in the foot are required to reduce these errors and the time burden associated with the manual processing

    A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics

    Get PDF
    Measuring motion of the human foot presents a unique challenge due to the large number of closely packed bones with congruent articulating surfaces. Optical motion capture (OMC) and multi-segment models can be used to infer foot motion, but might be affected by soft tissue artifact (STA). Biplanar videoradiography (BVR) is a relatively new tool that allows direct, non-invasive measurement of bone motion using high-speed, dynamic x-ray images to track individual bones. It is unknown whether OMC and BVR can be used interchangeably to analyse multi-segment foot motion. Therefore, the aim of this study was to determine the agreement in kinematic measures of dynamic activities. Nine healthy participants performed three walking and three running trials while BVR was recorded with synchronous OMC. Bone position and orientation was determined through manual scientific-rotoscoping. The OMC and BVR kinematics were co-registered to the same coordinate system, and BVR tracking was used to create virtual markers for comparison to OMC during dynamic trials. Root mean square (RMS) differences in marker positions and joint angles as well as a linear fit method (LFM) was used to compare the outputs of both methods. When comparing BVR and OMC, sagittal plane angles were in good agreement (ankle: R2 = 0.947, 0.939; Medial Longitudinal Arch (MLA) Angle: R2 = 0.713, 0.703, walking and running, respectively). When examining the ankle, there was a moderate agreement between the systems in the frontal plane (R2 = 0.322, 0.452, walking and running, respectively), with a weak to moderate correlation for the transverse plane (R2 = 0.178, 0.326, walking and running, respectively). However, root mean squared error (RMSE) showed angular errors ranging from 1.06 to 8.31° across the planes (frontal: 3.57°, 3.67°, transverse: 4.28°, 4.70°, sagittal: 2.45°, 2.67°, walking and running, respectively). Root mean square (RMS) differences between OMC and BVR marker trajectories were task dependent with the largest differences in the shank (6.0 ± 2.01 mm) for running, and metatarsals (3.97 ± 0.81 mm) for walking. Based on the results, we suggest BVR and OMC provide comparable solutions to foot motion in the sagittal plane, however, interpretations of out-of-plane movement should be made carefully

    Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children

    Get PDF
    Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait

    The effect of muscle-tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence

    Get PDF
    The maximum force-generating capacity of a muscle is dependent on the lengths and velocities of its contractile apparatus. Muscle-tendon unit (MTU) length changes can be estimated from joint kinematics; however, contractile element length changes are more difficult to predict during dynamic contractions. The aim of this study was to compare vastus lateralis (VL) MTU and fascicle level force-length and force-velocity relationships, and dynamic muscle function while cycling at a constant submaximal power output (2.5 W/kg) with different cadences. We hypothesized that manipulating cadence at a constant power output would not affect VL MTU shortening, but significantly affect VL fascicle shortening. Furthermore, these differences would affect the predicted force capacity of the muscle. Using an isokinetic dynamometer and B-mode ultrasound (US), we determined the force-length and force-velocity properties of the VL MTU and its fascicles. In addition, three-dimensional kinematics and kinetics of the lower limb, as well as US images of VL fascicles were collected during submaximal cycling at cadences of 40, 60, 80, and 100 rotations per minute. Ultrasound measures revealed a significant increase in fascicle shortening as cadence decreased (84% increase across all conditions, P < 0.01), whereas there were no significant differences in MTU lengths across any of the cycling conditions (maximum of 6%). The MTU analysis resulted in greater predicted force capacity across all conditions relative to the force-velocity relationship (P < 0.01). These results reinforce the need to determine muscle mechanics in terms of separate contractile element and connective tissue length changes during isokinetic contractions, as well as dynamic movements like cycling
    • …
    corecore