57 research outputs found

    Admixed pellets for fast and efficient delivery of plasma enhancement gases: Investigations at AUG exploring the option for EU-DEMO

    Get PDF
    Gas and pellet injection are envisaged for particle fuelling in EU-DEMO. The gas system will provide edge and divertor fuelling and any further gas species required for operation. Pellets, mm-sized bodies formed from solid hydrogen fuel, are designed for efficient and fast core fuelling. However, they can also be employed for a more efficient delivery of plasma enhancement gases, by admixing them with the fuelling pellets. To check this option for EU-DEMO, explorative investigations have been performed at ASDEX Upgrade (AUG). The AUG system produces ice in a batch process sufficient for about 100 pellets, initially designed for operation with pure H2_2 or D2_2. On a trial basis, pellet formation was tested using an H2_2/D2_2 mixture and admixtures containing small amounts (up to 2 mol%) of N2_2, Ar, Kr or Xe in the D2_2 host. A homogeneous and reproducible ice composition was found for the H2_2/D2_2 = 1:1 case. For all the admixed gases, a depletion of the admixture in the ice with increasing atomic number is observed. Nevertheless, the fast and efficient delivery of admixed pellets was clearly demonstrated in dedicated plasma experiments at AUG. Detailed investigations showed that the Ar supplied via admixed pellets has a higher radiation efficiency and a faster radiation rise than an Ar/D2_2 gas puff. Furthermore, Ar density measurements in a discharge with admixed pellet injection show reasonable agreement with findings of a fading admixed species’ concentration along the ice rod and assumptions on the pellet ablation location in the plasma. Investigations performed at the Oak Ridge National Laboratory with a large batch extruder using up to 2 mol% Ne in D2_2 confirmed that production of much larger ice quantities can be achieved. These initial explorative investigations clearly reveal the great potential of admixed pellets, although they also demonstrate that further technology efforts are required before their benefits can be utilized

    Keratinocytes as Depository of Ammonium-Inducible Glutamine Synthetase: Age- and Anatomy-Dependent Distribution in Human and Rat Skin

    Get PDF
    In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS), an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP). While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component ß-catenin. Inhibition of, glycogen synthase kinase 3β in cultured keratinocytes and HaCaT cells, however, did not support a direct role of ß-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8–10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia

    Validierung von open-source-Studiensoftware: Vorgehen und Ergebnisse

    No full text

    Bei welchen Präparategruppen gibt es Informationsdefizite zum Metabolismus der Frau?

    No full text

    Long-term Effect of Convulsive Behavior on the Density of Adenosine A1 and A2A Receptors in the Rat Cerebral Cortex

    Get PDF
    Purpose: Adenosine is a neuromodulator that has been proposed to act as an anticonvulsant mainly via inhibitory A1 receptors, but recent data show that genetic deletion of facilitatory A2A receptors might also attenuate convulsions. Since both A1 and A2A receptors are prone to down- and upregulation in different stressful situations, we investigated if convulsive behavior leads to a long-term change in A1 and A2A receptor density in the rat cerebral cortex. Methods: Stage 4-5 convulsions (Racine's scale) were induced in adult Wistar rats either through amygdala stimulation (kindling) or by intraperitoneal injection of kainate (10 mg/ml). Rats were killed after 4 weeks to evaluate adenosine A1 and A2A receptor density in the cerebral cortex using both Western blot and membrane binding assays. Results: The binding density of the A1 antagonist, 3H-DPCPX, decreased by 40. ± 4.4% and by 20.7 ± 0.5% after kindling or kainate injection. Likewise, A1 receptor immunoreactivity in cortical membranes from kindled or kainate-injected rats decreased by 19.1 ± 3.3% and 12.7 ± 5.7%, respectively. In contrast, the binding density of the A2A receptor antagonist 3H-SCH 58261 increased by 293 ± 34% and by 159 ± 32% in cortical membranes from kindled or kainate-injected rats, and A2A receptor immunoreactivity also increased by 151 ± 12% and 79.6 ± 7.0%. Conclusions: This indicates that after convulsive behavior there is a long-term decrease of A1 receptors accompanied by an increased density of A2A receptors, suggesting that A2A antagonists rather than A1 agonists may be more promising anticonvulsive drugs
    • …
    corecore