32 research outputs found

    A narrative analysis of career transition themes and outcomes using chaos theory as a guiding metaphor

    Get PDF
    In a rapidly changing world of work little research exists on mid-career transitions. We investigated these using the open-systems approach of chaos theory as a guiding metaphor and conducted interviews with seven mid-career individuals chosen for their experience of a significant mid-career transition. Four common themes were identified through narrative analysis, where ‘false starts’ to a career were a common experience prior to finding a career ‘fit’. Career transitions, precipitated by a trigger state and/or event such as a period of disillusionment, were an important part of this ‘finding a fit’ process. Overall, career success outcomes were shaped by a combination of chaos elements: chance, unplanned events, and non-linearity of resultant outcomes. We discuss implications for future research and for practice

    The sensitivity of California water resources to climate change scenarios

    No full text
    Using the latest available General Circulation Model (GCM) results we present an assessment of climate change impacts on California hydrology and water resources. The approach considers the output of two GCMs, the PCM and the HadCM3, run under two different greenhouse gas (GHG) emission scenarios: the high emission A1fi and the low emission B1. The GCM output was statistically downscaled and used in the Variable Infiltration Capacity (VIC) macroscale distributed hydrologic model to derive inflows to major reservoirs in the California Central Valley. Historical inflows used as inputs to the water resources model CalSim II were modified to represent the climate change perturbed conditions for water supply deliveries, reliability, reservoir storage and changes to variables of environmental concern. Our results show greater negative impacts to California hydrology and water resources than previous assessments of climate change impacts in the region. These impacts, which translate into smaller streamflows, lower reservoir storage and decreased water supply deliveries and reliability, will be especially pronounced later in the 21st Century and south of the San Francisco bay Delta. The importance of considering how climate change impacts vary for different temporal, spatial, and institutional conditions in addition to the average impacts is also demonstrated
    corecore