48 research outputs found

    Investigation of the Origin and Spread of a Mammalian Transposable Element Based on Current Sequence Diversity

    Get PDF
    Almost half the human genome consists of mobile DNA elements, and their analysis is a vital part of understanding the human genome as a whole. Many of these elements are ancient and have persisted in the genome for tens or hundreds of millions of years, providing a window into the evolution of modern mammals. The Golem family have been used as model transposons to highlight computational analyses which can be used to investigate these elements, particularly the use of molecular dating with large transposon families. Whole-genome searches found Golem sequences in 20 mammalian species. Golem A and B subsequences were only found in primates and squirrel. Interestingly, the full-length Golem, found as a few copies in many mammalian genomes, was found abundantly in horse. A phylogenetic profile suggested that Golem originated after the eutherian–metatherian divergence and that the A and B subfamilies originated at a much later date. Molecular dating based on sequence diversity suggests an early age, of 175 Mya, for the origin of the family and that the A and B lineages originated much earlier than expected from their current taxonomic distribution and have subsequently been lost in some lineages. Using publically available data, it is possible to investigate the evolutionary history of transposon families. Determining in which organisms a transposon can be found is often used to date the origin and expansion of the families. However, in this analysis, molecular dating, commonly used for determining the age of gene sequences, has been used, reducing the likelihood of errors from deleted lineages

    Signs of positive selection of somatic mutations in human cancers detected by EST sequence analysis

    Get PDF
    BACKGROUND: Carcinogenesis typically involves multiple somatic mutations in caretaker (DNA repair) and gatekeeper (tumor suppressors and oncogenes) genes. Analysis of mutation spectra of the tumor suppressor that is most commonly mutated in human cancers, p53, unexpectedly suggested that somatic evolution of the p53 gene during tumorigenesis is dominated by positive selection for gain of function. This conclusion is supported by accumulating experimental evidence of evolution of new functions of p53 in tumors. These findings prompted a genome-wide analysis of possible positive selection during tumor evolution. METHODS: A comprehensive analysis of probable somatic mutations in the sequences of Expressed Sequence Tags (ESTs) from malignant tumors and normal tissues was performed in order to access the prevalence of positive selection in cancer evolution. For each EST, the numbers of synonymous and non-synonymous substitutions were calculated. In order to identify genes with a signature of positive selection in cancers, these numbers were compared to: i) expected numbers and ii) the numbers for the respective genes in the ESTs from normal tissues. RESULTS: We identified 112 genes with a signature of positive selection in cancers, i.e., a significantly elevated ratio of non-synonymous to synonymous substitutions, in tumors as compared to 37 such genes in an approximately equal-sized EST collection from normal tissues. A substantial fraction of the tumor-specific positive-selection candidates have experimentally demonstrated or strongly predicted links to cancer. CONCLUSION: The results of EST analysis should be interpreted with extreme caution given the noise introduced by sequencing errors and undetected polymorphisms. Furthermore, an inherent limitation of EST analysis is that multiple mutations amenable to statistical analysis can be detected only in relatively highly expressed genes. Nevertheless, the present results suggest that positive selection might affect a substantial number of genes during tumorigenic somatic evolution

    Testing the Ortholog Conjecture with Comparative Functional Genomic Data from Mammals

    Get PDF
    A common assumption in comparative genomics is that orthologous genes share greater functional similarity than do paralogous genes (the “ortholog conjecture”). Many methods used to computationally predict protein function are based on this assumption, even though it is largely untested. Here we present the first large-scale test of the ortholog conjecture using comparative functional genomic data from human and mouse. We use the experimentally derived functions of more than 8,900 genes, as well as an independent microarray dataset, to directly assess our ability to predict function using both orthologs and paralogs. Both datasets show that paralogs are often a much better predictor of function than are orthologs, even at lower sequence identities. Among paralogs, those found within the same species are consistently more functionally similar than those found in a different species. We also find that paralogous pairs residing on the same chromosome are more functionally similar than those on different chromosomes, perhaps due to higher levels of interlocus gene conversion between these pairs. In addition to offering implications for the computational prediction of protein function, our results shed light on the relationship between sequence divergence and functional divergence. We conclude that the most important factor in the evolution of function is not amino acid sequence, but rather the cellular context in which proteins act

    The birth of a human-specific neural gene by incomplete duplication and gene fusion

    Get PDF
    Background: Gene innovation by duplication is a fundamental evolutionary process but is difficult to study in humans due to the large size, high sequence identity, and mosaic nature of segmental duplication blocks. The human-specific gene hydrocephalus-inducing 2, HYDIN2, was generated by a 364 kbp duplication of 79 internal exons of the large ciliary gene HYDIN from chromosome 16q22.2 to chromosome 1q21.1. Because the HYDIN2 locus lacks the ancestral promoter and seven terminal exons of the progenitor gene, we sought to characterize transcription at this locus by coupling reverse transcription polymerase chain reaction and long-read sequencing. Results: 5' RACE indicates a transcription start site for HYDIN2 outside of the duplication and we observe fusion transcripts spanning both the 5' and 3' breakpoints. We observe extensive splicing diversity leading to the formation of altered open reading frames (ORFs) that appear to be under relaxed selection. We show that HYDIN2 adopted a new promoter that drives an altered pattern of expression, with highest levels in neural tissues. We estimate that the HYDIN duplication occurred ~3.2 million years ago and find that it is nearly fixed (99.9%) for diploid copy number in contemporary humans. Examination of 73 chromosome 1q21 rearrangement patients reveals that HYDIN2 is deleted or duplicated in most cases. Conclusions: Together, these data support a model of rapid gene innovation by fusion of incomplete segmental duplications, altered tissue expression, and potential subfunctionalization or neofunctionalization of HYDIN2 early in the evolution of the Homo lineage

    Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A widely-used approach for discovering functional and physical interactions among proteins involves phylogenetic profile comparisons (PPCs). Here, proteins with similar profiles are inferred to be functionally related under the assumption that proteins involved in the same metabolic pathway or cellular system are likely to have been co-inherited during evolution.</p> <p>Results</p> <p>Our experimentation with <it>E. coli </it>and yeast proteins with 16 different carefully composed reference sets of genomes revealed that the phyletic patterns of proteins in prokaryotes alone could be adequate enough to make reasonably accurate functional linkage predictions. A slight improvement in performance is observed on adding few eukaryotes into the reference set, but a noticeable drop-off in performance is observed with increased number of eukaryotes. Inclusion of most parasitic, pathogenic or vertebrate genomes and multiple strains of the same species into the reference set do not necessarily contribute to an improved sensitivity or accuracy. Interestingly, we also found that evolutionary histories of individual pathways have a significant affect on the performance of the PPC approach with respect to a particular reference set. For example, to accurately predict functional links in carbohydrate or lipid metabolism, a reference set solely composed of prokaryotic (or bacterial) genomes performed among the best compared to one composed of genomes from all three super-kingdoms; this is in contrast to predicting functional links in translation for which a reference set composed of prokaryotic (or bacterial) genomes performed the worst. We also demonstrate that the widely used random null model to quantify the statistical significance of profile similarity is incomplete, which could result in an increased number of false-positives.</p> <p>Conclusion</p> <p>Contrary to previous proposals, it is not merely the number of genomes but a careful selection of informative genomes in the reference set that influences the prediction accuracy of the PPC approach. We note that the predictive power of the PPC approach, especially in eukaryotes, is heavily influenced by the primary endosymbiosis and subsequent bacterial contributions. The over-representation of parasitic unicellular eukaryotes and vertebrates additionally make eukaryotes less useful in the reference sets. Reference sets composed of highly non-redundant set of genomes from all three super-kingdoms fare better with pathways showing considerable vertical inheritance and strong conservation (e.g. translation apparatus), while reference sets solely composed of prokaryotic genomes fare better for more variable pathways like carbohydrate metabolism. Differential performance of the PPC approach on various pathways, and a weak positive correlation between functional and profile similarities suggest that caution should be exercised while interpreting functional linkages inferred from genome-wide large-scale profile comparisons using a single reference set.</p

    The non-coding transcriptome as a dynamic regulator of cancer metastasis.

    Get PDF
    Since the discovery of microRNAs, non-coding RNAs (NC-RNAs) have increasingly attracted the attention of cancer investigators. Two classes of NC-RNAs are emerging as putative metastasis-related genes: long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs). LncRNAs orchestrate metastatic progression through several mechanisms, including the interaction with epigenetic effectors, splicing control and generation of microRNA-like molecules. In contrast, snoRNAs have been long considered "housekeeping" genes with no relevant function in cancer. However, recent evidence challenges this assumption, indicating that some snoRNAs are deregulated in cancer cells and may play a specific role in metastasis. Interestingly, snoRNAs and lncRNAs share several mechanisms of action, and might synergize with protein-coding genes to generate a specific cellular phenotype. This evidence suggests that the current paradigm of metastatic progression is incomplete. We propose that NC-RNAs are organized in complex interactive networks which orchestrate cellular phenotypic plasticity. Since plasticity is critical for cancer cell metastasis, we suggest that a molecular interactome composed by both NC-RNAs and proteins orchestrates cancer metastasis. Interestingly, expression of lncRNAs and snoRNAs can be detected in biological fluids, making them potentially useful biomarkers. NC-RNA expression profiles in human neoplasms have been associated with patients' prognosis. SnoRNA and lncRNA silencing in pre-clinical models leads to cancer cell death and/or metastasis prevention, suggesting they can be investigated as novel therapeutic targets. Based on the literature to date, we critically discuss how the NC-RNA interactome can be explored and manipulated to generate more effective diagnostic, prognostic, and therapeutic strategies for metastatic neoplasms
    corecore