41 research outputs found

    Computer Simulation of Cellular Patterning Within the Drosophila Pupal Eye

    Get PDF
    We present a computer simulation and associated experimental validation of assembly of glial-like support cells into the interweaving hexagonal lattice that spans the Drosophila pupal eye. This process of cell movements organizes the ommatidial array into a functional pattern. Unlike earlier simulations that focused on the arrangements of cells within individual ommatidia, here we examine the local movements that lead to large-scale organization of the emerging eye field. Simulations based on our experimental observations of cell adhesion, cell death, and cell movement successfully patterned a tracing of an emerging wild-type pupal eye. Surprisingly, altering cell adhesion had only a mild effect on patterning, contradicting our previous hypothesis that the patterning was primarily the result of preferential adhesion between IRM-class surface proteins. Instead, our simulations highlighted the importance of programmed cell death (PCD) as well as a previously unappreciated variable: the expansion of cells' apical surface areas, which promoted rearrangement of neighboring cells. We tested this prediction experimentally by preventing expansion in the apical area of individual cells: patterning was disrupted in a manner predicted by our simulations. Our work demonstrates the value of combining computer simulation with in vivo experiments to uncover novel mechanisms that are perpetuated throughout the eye field. It also demonstrates the utility of the Glazier–Graner–Hogeweg model (GGH) for modeling the links between local cellular interactions and emergent properties of developing epithelia as well as predicting unanticipated results in vivo

    A population-based study of ambulatory and surgical services provided by orthopaedic surgeons for musculoskeletal conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ongoing process of population aging is associated with an increase in prevalence of musculoskeletal conditions with a concomitant increase in the demand of orthopaedic services. Shortages of orthopaedic services have been documented in Canada and elsewhere. This population-based study describes the number of patients seen by orthopaedic surgeons in office and hospital settings to set the scene for the development of strategies that could maximize the availability of orthopaedic resources.</p> <p>Methods</p> <p>Administrative data from the Ontario Health Insurance Plan and Canadian Institute for Health Information hospital separation databases for the 2005/06 fiscal year were used to identify individuals accessing orthopaedic services in Ontario, Canada. The number of patients with encounters with orthopaedic surgeons, the number of encounters and the number of surgeries carried out by orthopaedic surgeons were estimated according to condition groups, service location, patient's age and sex.</p> <p>Results</p> <p>In 2005/06, over 520,000 Ontarians (41 per 1,000 population) had over 1.3 million encounters with orthopaedic surgeons. Of those 86% were ambulatory encounters and 14% were in hospital encounters. The majority of ambulatory encounters were for an injury or related condition (44%) followed by arthritis and related conditions (37%). Osteoarthritis accounted for 16% of all ambulatory encounters. Orthopaedic surgeons carried out over 140,000 surgeries in 2005/06: joint replacement accounted for 25% of all orthopaedic surgeries, whereas closed repair accounted for 16% and reductions accounted for 21%. Half of the orthopaedic surgeries were for arthritis and related conditions.</p> <p>Conclusion</p> <p>The large volume of ambulatory care points to the significant contribution of orthopaedic surgeons to the medical management of chronic musculoskeletal conditions including arthritis and injuries. The findings highlight that surgery is only one component of the work of orthopaedic surgeons in the management of these conditions. Policy makers and orthopaedic surgeons need to be creative in developing strategies to accommodate the growing workload of orthopaedic surgeons without sacrificing quality of care of patients with musculoskeletal conditions.</p

    Comparing individual-based approaches to modelling the self-organization of multicellular tissues.

    Get PDF
    The coordinated behaviour of populations of cells plays a central role in tissue growth and renewal. Cells react to their microenvironment by modulating processes such as movement, growth and proliferation, and signalling. Alongside experimental studies, computational models offer a useful means by which to investigate these processes. To this end a variety of cell-based modelling approaches have been developed, ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles or extended shapes. However, it remains unclear how these approaches compare when applied to the same biological problem, and what differences in behaviour are due to different model assumptions and abstractions. Here, we exploit the availability of an implementation of five popular cell-based modelling approaches within a consistent computational framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assumptions within these models. In each case we provide full details of all technical aspects of our model implementations. We compare model implementations using four case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short- and long-range signalling. These case studies demonstrate the applicability of each model and provide a guide for model usage

    Spatial and functional distribution of MYBPC3 pathogenic variants and clinical outcomes in patients with hypertrophic cardiomyopathy

    Get PDF
    Background - Pathogenic variants in MYBPC3, encoding cardiac MyBP-C, are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped HCM cohorts have precluded detailed genotype-phenotype correlations. Methods - Patients with HCM and MYBPC3 variants were identified from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Variant types and locations were analyzed, morphologic severity was assessed, and time-event analysis was performed (composite clinical outcome of sudden death, class III/IV heart failure, LVAD/transplant, atrial fibrillation). For selected missense variants falling in enriched domains, myofilament localization and degradation rates were measured in vitro. Results - Among 4,756 genotyped HCM patients in SHaRe, 1,316 patients were identified with adjudicated pathogenic truncating (N=234 unique variants, 1047 patients) or non-truncating (N=22 unique variants, 191 patients) variants in MYBPC3. Truncating variants were evenly dispersed throughout the gene, and hypertrophy severity and outcomes were not associated with variant location (grouped by 5' - 3' quartiles or by founder variant subgroup). Non-truncating pathogenic variants clustered in the C3, C6, and C10 domains (18 of 22, 82%, p<0.001 vs. gnomAD common variants) and were associated with similar hypertrophy severity and adverse event rates as observed with truncating variants. MyBP-C with variants in the C3, C6, and C10 domains was expressed in rat ventricular myocytes. C10 mutant MyBP-C failed to incorporate into myofilaments and degradation rates were accelerated by ~90%, while C3 and C6 mutant MyBP-C incorporated normally with degradation rate similar to wild-type. Conclusions - Truncating variants account for 91% of MYBPC3 pathogenic variants and cause similar clinical severity and outcomes regardless of location, consistent with locus-independent loss-of-function. Non-truncating MYBPC3 pathogenic variants are regionally clustered, and a subset also cause loss-of-function through failure of myofilament incorporation and rapid degradation. Cardiac morphology and clinical outcomes are similar in patients with truncating vs. non-truncating variants
    corecore