606 research outputs found

    Quasi-linear simulations of inner radiation belt electron pitch angle and energy distributions

    Get PDF
    “Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning-generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two-dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy

    Development of Free Vortex Wake Method for Yaw Misalignment Effect on the Thrust Vector and Generated Power

    Get PDF
    Wind power is currently one of the most reliable new energy sources serving as an alternative to fossil fuel generated electricity and is known as a widely distributed clean and renewable source of energy. It is now the world's fastest growing energy source and has also become one of the most rapidly expanding industries. The aerodynamics of a wind turbine is governed by the flow around the rotor, where the prediction of air loads on rotor blades in different operational conditions and their relation to rotor structural dynamics is crucial for design purposes. One of the challenges in wind turbine aerodynamics is the yaw condition where the undisturbed upstream flow is not perpendicular to the rotor plane, giving a non-uniform blade load which is contrary to the axisymmetric flow assumption in the BEM (Blade Element Momentum) method. However, there are some engineering methods modifying the BEMmethod for yaw misalignment situations,1 where they often calculate the skewed axial induction factor as an average value over the rotor disk which is insensitive to the blade rotation direction. On the other hand, experiments show that the thrust vector for a positive yaw misalignment differs from that for a negative yaw misalignment. A free vortex wake method, based on the potential, inviscid and irrotational flow, is developed to study the deviation of thrust vector relative to rotor shaft. The results are compared with the BEM method2 and experimental data. A two-bladed variable speed wind turbine, the Hönö wind turbine,3 is used for this study

    Experimental and Computational Investigation for In-Line Boundary Layer Ingestion

    Get PDF
    The aerodynamic characteristics of an aft-body, in-line mounted, boundary layer ingesting, electric ducted fan, propulsion installation system has been investigated through experimental and computational analysis. A modular wind-tunnel model allows variation in the geometry of the propulsion installation system to be assessed, in combination with fan speed. Various experimental measurement techniques, including LDA, seven-hole-probe and surface pressures are employed. The propulsion installation system has also been investigated using RANS CFD and comparison with experimental data is presented. An investigation of the boundary conditions for efficiently representing the fan in CFD is described. Initial results show reasonably good agreement between CFD and experiment, in terms of velocity profiles and surface pressures, but highlight remaining differences for cases exhibiting flow separation

    A new diffusion matrix for whistler mode chorus waves

    Get PDF
    Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3,536 power spectra for upper and lower band chorus for 1.5 ≤ L∗ ≤ 10, MLT, magnetic latitude 0o ≤ |λm| ≤ 60o and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 09:00 MLT. Energy diffusion extends to a few MeV at large pitch angles > 60o and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (< 12o). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗ = 8 even for low levels of geomagnetic activitywhile upper band chorus is restricted to mainly L∗ < 6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few keV near the loss cone up to several MeV at large pitch angles indicating loss at low energies and net acceleration at high energies

    Oscillatory oblique stagnation-point flow toward a plane wall

    Get PDF
    Two-dimensional oscillatory oblique stagnation-point flow toward a plane wall is investigated. The problem is a eneralisation of the steady oblique stagnation-point flow examined by previous workers. Far from the wall, the flow is composed of an irrotational orthogonal stagnation-point flow with a time-periodic strength, a simple shear flow of constant vorticity, and a time-periodic uniform stream. An exact solution of the Navier-Stokes equations is sought for which the flow streamfunction depends linearly on the coordinate parallel to the wall. The problem formulation reduces to a coupled pair of partial differential equations in time and one spatial variable. The first equation describes the oscillatory orthogonal stagnation-point flow discussed by previous workers. The second equation, which couples to the first, describes the oblique component of the flow. A description of the flow velocity field, the instantaneous streamlines, and the particle paths is sought through numerical solutions of the governing equations and via asymptotic analysis

    Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm

    Get PDF
    Abstract The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17-19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 - 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1-0.5fce (theelectron equatorial gyrofrequency), with a peak spectral density ∼10-4 nT 2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102-103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planck diffusion equation. Numerical simulations demonstrate that the lower-band chorus waves indeed produce such huge enhancements in relativistic electron fluxes within 15 h, fitting well with the observation. Key Points Initial RBSP correlated data of chorus waves and relativistic electron fluxes A realistic simulation to examine effect of chorus on relativistic electron flux Chorus yields huge increases inelectron flux rapidly, consistent with data
    corecore