3,025 research outputs found

    Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties of new epoxy and urethane adhesives

    Get PDF
    The effects of novel aromatic diamine structures on the adhesive properties of epoxy and polyurethane adhesives were studied. Aromatic diamines based on benzophenone and diphenyl-methane isomers were evaluated as curing agents for epoxy resins and benzophenone and diphenyl-methane based diamine isomers were evaluated as curing agents for polyurethane adhesives. Polyurethane adhesives were prepared based on m, m prime-diisocyanato-diphenyl-methane and m, m prime-diisocyanato-benzophenone. The m, m prime-diisocayanato-diphenyl-methane based adhesive had properties comparable to state-of-the-art adhesives. The m, m prime-diisocyanato-benzophenone based adhesive was extremely reactive

    Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties on new epoxy and urethane adhesives

    Get PDF
    Aromatic diamines based on diphenyl sulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m prime-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m prime-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p prime-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m prime-methylene dianiline-cured epoxy appeared to be equivalent to the p,p prime-methylene dianiline-cured epoxy as judged by short beam shear tests

    Results of free yaw tests of the Mod-O 100 kilowatt wind turbine

    Get PDF
    Tests were conducted on the Mod-O 100 kW experimental wind turbine to provide data on yaw alignment characteristics of a large horizontal axis wind turbine with its yaw restraint removed (i.e., in free yaw). The wind turbine consisted of a downwind horizontal axis rotor mounted on a tubular tower. Three rotor configurations were tested. Each rotor was teetered, coned 3 deg and tip-controlled. Two of the rotors had pitch-flap coupling or Delta-3, and one rotor had none. The two rotors with Delta-3 differed in the airfoil used in the tip sections. Test results indicate the rotor without pitch-flap coupling did not align closer than 25 deg with the wind, and pitch-flap coupling improved the wind turbine's alignment with the wind. Yaw damping was shown to have a favorable effect on free yaw characteristics. The change in the tip airfoil section was shown to affect the free yaw alignment also. The rotors with Delta-3 were shown to be capable of responding to wind shifts and exhibited stable operating properties

    Teetered, tip-controlled rotor: Preliminary test results from Mod-0 100-kW experimental wind turbine

    Get PDF
    Results of tests conducted using the MOD-0 100 kW experimental wind turbine are evaluated. The teetered rotor significantly decreased loads on the yaw drive mechanism and reduced blade cyclic flapwise bending moments by 25 percent at the 20 percent span location when compared to the rigid hub rotor. The teetered hub performed well, but impacted the teeter stops on occasion as wind speed and/or direction varied rapidly. The tip-controlled rotor performed satisfactorily with some expected loss of control when compared to the full span pitchable blade. The performance results indicate that a review of techniques used to calculate rotor power is in order

    Stall induced instability of a teetered rotor

    Get PDF
    Recent tests on the 38m Mod-0 horizontal experimental wind turbine yielded quantitative information on stall induced instability of a teetered rotor. Tests were conducted on rotor blades with NACA 230 series and NACA 643-618 airfoils at low rotor speeds to produce high angles of attack at relatively low wind speeds and power levels. The behavior of the rotor shows good agreement with predicted rotor response based on blade angle of attack calculations and airfoil section properties. The untwisted blades with the 64 series airfoil sections had a slower rate of onset of rotor instability when compared with the twisted 230 series blades, but high teeter angles and teeter stop impacts were experienced with both rotors as wind speeds increased to produce high angles of attack on the outboard portion of the blade. The relative importance of blade twist and airfoil section stall characteristics on the rate of onset of rotor unstability with increasing wind speed was not established however. Blade pitch was shown to be effective in eliminating rotor instability at the expense of some loss in rotor performance near rated wind speed

    Comparison of upwind and downwind rotor operations of the DOE/NASA 100-kW Mod-O wind turbine

    Get PDF
    Three aspects of the test results are compared: rotor blade bending loads, rotor teeter response, and nacelle yaw moments. As a result of the tests, it is shown that while mean flatwise bending moments were unaffected by the placement of the rotor, cyclic flatwise bending tended to increase with wind speed for the downwind rotor while remaining somewhat uniform with wind speed for the upwind rotor, reflecting the effects of increased flow disturbance for a downwind rotor. Rotor teeter response was not significantly affected by the rotor location relative to the tower, but appears to reflect reduced teeter stability near rated wind speed for both configurations. Teeter stability appears to return above wind speed, however. Nacelle yaw moments are higher for the upwind rotor but do not indicate significant design problems for either configuration

    The effect of yaw on horizontal axis wind turbine loading and performance

    Get PDF
    The Mod-0 100 kW experimental wind turbine was tested to determine the effects of yaw on rotor power, blade loads and teeter response. The wind turbine was operated for extended periods at yaw angles up to 49 deg to define average or mean response to yaw. It was determined that the effect of yaw on rotor power can be approximated by the cube of the velocity normal to the rotor disc as long as the yaw angle is less than 30 deg. Blade bending loads were relatively unaffected by yaw, but teeter angle increased with wind speed as the magnitude of the yaw angle exceeded 30 deg indicating a potential for teeter stop impacts at large yaw angles. No other adverse effects due to yaw were noted during the tests

    Measured performance of a tip-controlled, teetered rotor with an NACA 64 sub 3-618 tip airfoil

    Get PDF
    Tests were conducted on the Mod-O 100 kW Wind Turbine to determine the performance of a tip-controlled rotor having an NACA 64 sub-618 airfoil over the moveable outboard 30% of the blade, while operating at nominal rotor speeds of 21 and 31 rpm. Tests were conducted at two rotor speeds to assess the performance improvement which could be realized with 2-speed operation. Test data are compared with analytical predictions and concluding remarks are presented. The results indicate a clear performance improvement for the 2-speed operation

    Experimental data and theoretical analysis of an operating 100 kW wind turbine

    Get PDF
    Experimental test data are correlated with analyses of turbine loads and complete system behavior of the ERDA-NASA 100 kW Mod-0 wind turbine generator over a broad range of steady state conditions, as well as during transient conditions. The deficit in the ambient wind field due to the upwind tower turbine support structure is found to be very significant in exciting higher harmonic loads associated with the flapping response of the blade in bending

    Development of improved structural adhesives Annual summary report, 1 Jul. 1967 - 3 Dec. 1968

    Get PDF
    Improved structural adhesives for bonding aluminum over low temperature
    corecore